Abstract

Notes for MAA-5616 Measure Theory I, taught by Dr. Alexander
Reznikov in Spring 2019. In these notes, A\B := AN B°. Also, the
statement “A C B” does not necessarily mean that A is a proper subset
of B. Homeworks have been included in these notes and are labelled as
“Problem”. Knowledge of basic set theory is assumed, as is familiarity
with an introductory course on Real Analysis.

I accept sole responsibility for errors, of which I believe there will be
many. Please feel free to offer feedback at amalik at math dot fsu dot edu
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Syllabus

The purpose of this course is to introduce the notion of measure spaces
and integrals against general measures; in particular, to construct the Lebesgue
measure and Lebesgue Integral

Text book: Real Analysis by Royden and Fitzpatrick

Course Objectives: The purpose of this course is to introduce the no-
tion of measure spaces and integrals against general measures; in particular, to
construct the Lebesgue measure and Lebesgue integral.

Homeworks: Weekly graded homeworks will be given. Students are en-
couraged to collaborate on homeworks, but every student should write the final
solutions on his or her own. It is crucial for passing the qualifying exam to
understand every homework problem in all details.

Grading: There will be a midterm, a final exam, and weekly homeworks

University Attendance Policy: Excused absences include documented
illness, deaths in the family and other documented crises, call to active military
duty or jury duty, religious holy days, and official University activities. These
absences will be accommodated in a way that does not arbitrarily penalize
students who have a valid excuse. Consideration will also be given to students
whose dependent children experience serious illness.

Academic Honor Policy: The Florida State University Academic Honor
Policy outlines the University’s expectations for the integrity of students’ acad-
emic work, the procedures for resolving alleged violations of those expectations,
and the rights and responsibilities of students and faculty members throughout
the process. Students are responsible for reading the Academic Honor Policy
and for living up to their pledge to “...be honest and truthful and ... [to] strive for
personal and institutional integrity at Florida State University." (Florida State
University Academic Honor Policy, found at http://fda.fsu.edu/Academics/AcademicHonor-
Policy.) To summarize, violations of these policies will result in a rather messy
affair for you and me, so just don’t do it.

Americans with Disabilities Act: Students with disabilities needing aca-
demic accommodation should: (1) register with and provide documentation to
the Student Disability Resource Center; and (2) bring a letter to the instruc-
tor indicating the need for accommodation and what type. Please note that
instructors are not allowed to provide classroom accommodation to a student
until appropriate verification from the Student Disability Resource Center has
been provided.

This syllabus and other class materials are available in alternative format
upon request. For more information about services available to FSU students
with disabilities, contact the Student Disability Resource Center

874 Traditions Way

108 Student Services Building Florida State University

Tallahassee, FL. 32306-4167

(850) 644-9566 (voice)

(850) 644-8504 (TDD)



sdrc@admin.fsu.edu

http://www.disabilitycenter.fsu.edu/

Syllabus Change Policy: Except for changes that substantially affect
implementation of the evaluation (grading) statement, this syllabus is a guide
for the course and is subject to change with advance notice.



1 Measure

1.1 General Measure Spaces

In general, a measure is a function applied on a collection of sets. Both the
function and the domain have special properties. The ultimate idea is to define
a function that somehow “measures” a decent set. This measurement may
be in the form of length, volume, number of elements or other appropriate
sense of measure. In general, the function itself must follow some commonsense
properties, one of them being that the measure of union of disjoint sets must be
the sum of measures.

To get other commonsense properties, the collection on which the function
acts must have some structure to them. This is defined as follows: for any non-
empty set X, the collection 2 of subsets of X is called a o-algebra, denoted
by (X,2), a measure space, if

S1 X e

S2 A,Bed — A\Be

S3 {AizieN}cd = | JA e
i=1

Elements of a o-algebra are called measurable.
For any o-algebra 2, @ € 2 and % is also closed under countable intersec-

tions.
Proof. For the first claim, let A € 2. Then, A\A € 2 by S2 so that & € 2.
Let {A;:i € N} C 2. Since X € A by S1, for each i, X\A; = A¢ € A. We

also have -
Jas e
i=1

by S3. Since X € 2, again by S1, we have

X\GA;‘ €A = ﬁAi e
=1 i=1

Definition 1 Let (X,2) be a o-algebra. A measure p on (X,2) is a function
p: A — [0, 00] such that

M1 p (@) =0, and
M2 For a disjoint family {A; : i € N} C 2,

K (U&) = Z# (A;)



The triplet (X, %2, 1) is then known as a measurable space. The property
M2 is known as the countably additive property.

Example 2 Let X be any (countable) set. Define pi : 2% —[0,00] as pu(A) =
| Al

Such a p is called the counting measure. For our second example, we
will need to be a little more precise since that concerns what’s called the Borel
o-algebra on R, £. £ is the smallest o-algebra that contains all open sets of R.
Obviously, £ cannot contain only open sets A of R since, by definition, we must
have A € £ = A° € £, where A¢ “should” be open as well, but that is not
the case. The o-algebra is generated by adding all countable unions, countable
intersections, and relative complements of all open (under the usual topology)
subsets of R. A process, called completion of a measurable space which we
will see in §1.2, turns (R, £, m;), the measurable space using Borel o-algebra
with the Lebesgue Measure, to (R, 9%, m;), the Lebesgue Measurable Space.
This fact will not be proved in these notes but the machinery to do so will be
developed as we move on, as will many details of the latter space. And we have
already moved ahead of ourselves. At any rate, a measure has the following
properties:

Lemma 3 Let X be a non-empty set and let p be a measure on (X,2). Then,

Finite Additivity If {A; : 1 <i <n} C 2 is a collection of pairwise disjoint sets, then

H (UAz> = ZN (Az)

Monotonicity A, B € A with AC B = u(A) < p1(B)
Complementation A,B € A with A C B and 1 (A) < o0 = u(B\A) = p(B) — u(4)
Subadditivity If {A; : i € N} C 2, then

7 (G&) < iu (A)

i=1

Proof. Finite additivity
Let Aypqp = @ for k = 1,2,.... Then, {A;:¢ € N} C 2 is pairwise disjoint

so that,
H (Uz‘h) =p (U&) = ZM (Ai)

by M2 and

M (U&-) =D w(A)+0+0+ .. =) ()
i=1 i=1 i=1



by M1
Monotonicity
Given that A C B, we can write B = AU B\A. Then, by previous part,
w(B)=pu(AUB\A) = 1 (A) + p(B\A). Since B\A € %A by S2, u(B\A) > 0.
Thus, 1 (A) < p(B)
Complementation
Proceeding as above, we have p(B) = p(A) + u(B\A) but now we can
subtract the real number p (A) on both sides as we have p (A) < co.
Subadditivity
Let By = A; and
n—1
B, = An\ U Az
i=1
Then, the family {B; : i € N} is pairwise disjoint: assume that ¢ < j (the argu-
ment for ¢ > j is similar). Then,

B,NB; = <A7’\D Ak> N (AJ\JL_J Am>
k=1 m=1

i—1 j—1
= AN (AsnA;n (4, =2
k=1 m=1
since A; N Ay, = @ for some mo with 1 < mg = i < j (and, obviously,

A;NA¢ = @). Thus,

I (UBZ> = Zu (Bi) < ) n(A)
-1

i=1 i=1 g

since B; C A; for each i. We will be done if we can prove that

Usi= U,
i=1 i=1

Since B; C A; for each 7, we must have

oo o0
UBi C UAZ
i=1 i=1
For the converse, let
(o]
S UAZ
i=1

Define I = {j:z € A;} C N. By the well-ordering principle, I has a least

element, say m. Then,
m—1

T e Bm. :A’ITL\ U Az

i=1



so that both inclusions hold. =
The following properties mimic continuity properties.

Theorem 4 Let {A; : i € N} be a family of measurable sets. If this family is

increasing and nested, that is, we have a sequence of sets Ay C Ay C ..., then
o0
7 (U&) = lim 41 (A,)
i=1

In this case, p is said to be continuous from below. On the other hand, if
we have a nested decreasing sequence Ay D Az D ... and p(A;) < oo, then

o0
" (ﬂfb) = g An)
i=1
In this case, p is said to be continuous from above.

Proof. For first part, let £y = Ay and E, = A,\A,,—1. This family is mea-
surable by S2 and disjoint: WLOG assume that ¢ < j. Then, F; N E; =
AiNAL_ NA;NAS

= Al N Aj N (Ai—l U Aj_l)c

:AiﬁAg_l = & because 1 < j — 1

Moreover,
[e.e] (oo}
U= U
i=1 i=1

One side of the inclusion is obtained by observing that F; C A; for each ¢, which

gives us
o0 oo
i=1 i=1
For the reverse inclusion, let

00
x € UAZ
i=1

Define I = {j:xz € A;j} C N. By the well-ordering principle, I has a least
element, say m. Then, z € F,,, = A, \Ap—1 with Ag := &, so that

00
x € UEZ
i=1

Then,

g @A> - (QE> = i“ (E:)

= Jm D n(B) = Jim ) p(Ai\A-)
i=1 i=1

= nlirr;oz (1 (Ag) = p(Aiz1))
i=1



The last step is possible if we assume that p(A;) < oo for each ¢, otherwise
we would have co = 0o, so that equality still holds and the proof withstands
scrutiny. Thus,

n—oo

1 (UAz> = lim p(A;) — p(Ao)
i=1
Since we’ve assumed that Ay = &, we have p (Ag) = @ and we're done.
For the second part, let By = @&, By = A1\As, Bs = A1\As, ... . Then,

B; is an increasing sequence of sets: B; = A1\ A; and B;y1 = A1\ A;41. Since
Ai+1 C A;, we have Al\Az C Al\Ai+1) or that B; C Bi+l. Thus,

n—oo n—oo

i (UBz) = Jim p(B,) = lim (1 (A1) — 1 (A,)) (1)

To finish the proof, we first show that

UBi = 4\[4
i=1 i=1

To see thiS, note that Bl = Al\Al = . BQ = B1UBQ = Al\AQ = Al\ (Al N Ag)
This takes care of the base step for induction. Now, let

k k
UB:i = A\ 4
=1 =1

Then,

k41
UBi = Bpi1 = Ai1\Ak1
i=1

k+1

= A\[)A
i=1
We can therefore have
M(U&) ZM(A1)_M<ﬂAi> 2)

i=1 i=1

Equating (1) and (2), we get
p(Ar) — lim p(Ay) = p(Ar) —p (ﬂ&)

n— oo i1
Since u (A1) < 0o, then we can cancel this real number from both sides to get

7 (ﬂ&‘) = lim p(4,)

i=1

]
The converse also holds under different assumptions:



Problem 5 Let X be a non-empty set and let (X,21) be a o-algebra. Let u :
A — [0, 00] be finitely additive and, for every nested increasing sequence Ay C

Ay C ... in A,
1 (UA7;> = lim p(4,)
i=1

Then, 1 is a measure.
Solution 6 M1 Let A € A such that u(A) < co. Then, p(AUZ) = p(A) =

w(A) + () since A and @ are disjoint, so that (&) = 0.
M2 Let {B; : i € N} be a sequence of disjoint sets. We need to show that

I (G&) = iu (Bi)

Define

with A1 = By. Then,

n n+1
A, = gBl C L;Jle = An+1

gives us a family {A; : 1 € N} of an increasing sequence in 2 so that

I (D&) = lim p(Ay) = lim p (CJ&) = T}Lrgoiu (Bi)
i=1 i=1

i=1

by finite additivity of p so that

(oo} (oo}
% (U&) = ZH (Bi)
i=1 i=1
It remains to show that - -
Ja-Un
i=1 i=1
Let -
x € UAZ
i=1

Then, 37 such that



Thus,
U Al - U B;
i=1 i=1

Conversely, since B; C A; for each i, it follows that
Usi c A4
i=1 i=1
and, therefore
L (U&) =u (U&) => u(Bi)
i=1 i=1 i=1

Problem 7 Let X be a non-empty set and let (X,2) be a o-algebra. Let
A —[0,00] be finitely additive. Then, u is a measure if for every nested
decreasing sequence Ay D Ay D ... in A with u (A1) < o0,

u<ﬂm>:ggymu
=1

Solution 8 Let {B; : i € N} be family of disjoint sets. Let

Then, A, C A,q1 so that we have a nested decreasing sequence A5, C Aj,.
Let us first show that

o=
=1 =1

To this end, we first note that

00 7 o0
Vx € UAi,Hj such that v € A; = UBZ- - UBi
i=1 i=1 i=1

Conwversely,

o] J oo
T € UBZ-:MUEBJ- for some j and B; C UBi:Aj C UAi

i=1 i=1 i=1

It follows that

ﬁA##%EE$M<ﬁE>=u<ﬁ&>:ggﬁmg
i=1 i=1 i=1 i=1

Since p is finitely additive, we must have p (X) = p (CUC®) = pu(C) + p (C°).
That is, 1 (C) = u(X) — u(C¢). Of course we can only say this, provided that



w(C°) < oo, which we will take the liberty of assuming (in the other case, the
equality still holds). Moreover, we can denote

ﬁﬁ:m
i=1

N@D:M<UAJ:WNXFMMﬂ:ﬂ@}W<ﬂAa:HNXFthMﬂ

=1 =1 e
That is,
u(@J&))zu((UBJ)szX%}gﬂMm=wCﬂig&Zhﬁm
=1 i=1 =1
Thus,

Iz (UR) = nILH;OZM (Bi)
i=1 i=1

Definition 9 We say that a property holds almost everywhere or for almost
all z € X if the measure of the set for which the property does not hold is zero.

Lemma 10 (Borel-Cantelli) If we have a family of measurable sets {E; : i € N}
and their union has finite measure, i.e.,

then almost every x € X belongs to at most finitely many Eés.

Proof. We need to show that the set F' = {x € X : 2 belongs to infinitely many E;’s}
is measurable and has zero measure. Let x € F. Then, for every N € N,

o0
S U E,
n=N
Since this is true for every IV, then
o0 oo
S ﬂ U E,
N=1n=N

Conversely,
o0 oo

S ﬂ UE" = zeF
N=1n=N



Thus,
F=()UEn
N=1n=N
so that F' is measurable. Now, note that

o0

GEn ») UEn ») GEn
n=1 n=2 n=3

Then, by continuity from above, we have that

p(F) —u<ﬂ UEZ) = Jlim (UE> < lim Y u(E) =0
=N

N=1i=N i=N

because the union of {E; : ¢ € N} has finite measure. m

1.2 Completion of Measure

Let (X, 2, 1) be a measure space and let
M={ECX:E=AUBst. AcANB C C: p(C) =0}

That is, we add sets to a collection with measure zero. Then, 9 is a o-algebra.
Proof. We need to show that (a) X € 9, (b) if E, F € 9, then E\F € 9 and
(c) M is closed under countable unions

(a) Note that for each A€ A, A= AU and @ C & and (&) = 0, so that
A e M. Thus, A C M so that X, € M.

(b) We will first show that for any E € 9t, E° € 9 and then show that
M is closed under intersection. These two facts together will show that for any
B, Fin9M, E\F=ENF°eM.

Let E € 9 where E = AU B with A € 2 and B C C such that u (C) = 0.
Note that C' C B implies C° C B€ so that C°U B¢ = B¢ and that

Be=XnBc=(C°UuC)Nn(C°UB*) =C°U(CnN B°).

Then, E¢ = A°NB°= A°N (C°U (CnN B°)

=(A°NC°)U (A°NC N B°

Now, since A,C € 2, then A¢,C°¢ € 2 and so A°NC° € A. Also, by
definition, A°N C N B¢ C C and by assumption u (C) = 0 so that (4°NC°) U
(A°NCNB° =E°eM.

Next, let Let E, F' € 9. Then, 3A;, Ay, C1,Cy € A such that £ = A; U By,
F = Ay U By and B; C C; such that u(C;) =0 for ¢ = 1,2. Then, ENF =
(A1 UB1)N (A2 U Bs)

= (41N (A2 U By))U (B N (A3 U By))

=(A1NA2)U(A1 N By) U (B NA2)U (BN By)

Now, AiNAseAand AiNBy C By C CQ, BiNAy C By C Cq and B1N By
is a subset of Cy (and Cs). Thus, (41 N By)U (B N A2)U (B N By) C Cy UCs.
Note that p(ChUCy) < u(Cy) + 1 (C2) =040 =0 so that u(C; UC2) =0
since p (A) > 0 for all A € A. Thus, ENF € M.



We can now assert that for any E, F € MM, E\F = ENF° € M.
(c) Assume that {E; :¢ € N} C 9 is a family of disjoint sets, where, for
each i, E; = A; U B; where A; € 2 and B; C C; such that u (C;) = 0. Then,

o0

GE U 4 uB) UAUUB

i=1 i=1

Again,
UAi € A and UBi C Uci
i=1 =1 i=1

and that

+(Ue) <5

furnishing a proof of the third claim. =

For such E, define fi : 9t — [0, 00] by 71 (E) = u (A). This is a well-defined
measure on 1.

Proof. To show that @ is well defined, assume that £; = A; U By and Ey =
As U By with By C Cy, By C Cy and i (C;) = 0 for ¢ = 1,2. We need to show
that Fh = Fy — H(El) :ﬁ(Eg) Now, F1 = Ey

= A1 UB; = Ay U By

—— A1UBl UC; UCy :AQUBQU01UCQ

= A UCLUCy=AUC; UCsy since B; C C; for i =1,2.

Now, since p is measure on A, A, UC; UCy = Ao UC; UCs € A A; €A
and A; C Ay UC7 UCy, then M(Al) < M(Al U UCQ) = [J,(Ag uc UCQ) <
p(Az) + p(Cr) + p(C2) = p(A2) + 0+ 0 = pu (As).

Similarly, u(A2) < (A UCLUC) = p(A;UCUCy) < w(A;p). Thus,
(A1) = p(As), which means that @ (Eq) = i (E9)

We now show that 1 is a measure.

M1 Since 2 C 9 by (a) above, then 7i|y = g, by definition. Thus, i (&) =
(=) =0.

M2 Let {F; :i € N} C 9, where E; = A; U B; for each i, be a pairwise
disjoint family of 9-measurable subsets. Then,

I (GEJ =5 (Gz‘h) = f:li (A;) = iM(Ei)

making 7i a bona fide measure. m

uMg

)=0 = ,J<Uc>:o = GEieim

i=1

Problem 11 Let (X,2, 1) be a measure space, E € A and u(E) > 0. De-
fine A .= {ACE:AeA}. Show that that Ag is a o-algebra on E and the
restriction of 1 to E is a measure.

10



Solution 12 Since E C E, E € UAg. Let A,B € . Then, A C E and
A,B € (so A\B € ). Since AAB C A C E, we have that A\B C E. Thus,
A\B € Ug. Finally, let {E;:i € N} C UAg. Then, for each i, E; C E and
{E; :i € N} C . These two facts imply that

DEi CcFE
=1

by properties of sets and, respectively,

GEi e
=1

since A is a o-algebra. Thus

[OJEi S Q[E

i=1
and Ag is a o-algebra. Let p|p = v. Then, v (D) = plp (@) =0=pn (@) =0
since & € A. Now, let {E; : i € N} C Ug be pairwise disjoint. Then,

UEiEQlECi’l

i=1

e (Us) =+ (0s) -

ZM (Ei) = Z plg (Bi) = ZV (Ei)

so that

R
S
LC#

&
N——

I

1.3 Construction of Measures

There is a canonical way to build measures. For that, we need a little machinery.

Definition 13 Let S € 2% and p: S — [0,0] be a function. u is said to be
countably monotone if for every E € S, and for every {E; : i € N} C S, we
have

Ec|JE = u(B)< ZN(Ei)

i=1

Definition 14 Let S C 2% and p: S — [0,00] be a function. u is said to be
countably subadditive if for every {A; :1 € N} C S,



Definition 15 Let S C 2% and p: S — [0,0] be a function. u is said to be
a pre-measure if

P1 p(2) = 0;
P2 p is finitely additive; and
P3 p is countably monotone

Definition 16 An outer measure, u* : 2% — [0, 0], is a function definable
on every subset of a non-empty set X such that

01 p*(2)=0
02 p* is countably monotone.
Lemma 17 p* is countably subadditive and, therefore, finitely subadditive.

Proof. Let {A; :i € N} C 2. Then,

A:GAZ» — AcC GAZ»

i=1 i=1

so that

oo

p(A) =p (U&) < ZM (4i)
i=1

i=1
]

Example 18 The trivial measure p* (A) = 0 VA. The counting measure is
clearly another example.

Here is another interesting example.

Lemma 19 Let S C 2% and let pp: S — [0,00] be a function (we do not even
need u to be a pre-measure!). Define u* : 2% — [0, 00] by pu* (@) =0 and

p* (E) = inf {Zp, (Ei): EC | JEiANE; € sz'}
i=1 i=1
Then, u* is an outer measure.

Proof. We already have p* (&) = 0 so that O1 is trivially satisfied. Thus,
to prove that p* is an outer measure, we only need to prove O2 — countable
monotonicity from covering of E by {E; : i € N}:

Ec|JBE = u(B)< Zu* (E:)

i=1

12



If for some 4, p* (E;) = oo, we are done. Assume p* (E;) < oo for all . Let
e > 0. For every i, by properties of infimum, we can cover E; by a family
{EF : k € N} C S such that

. oo € o0 o0
it (B > I;u (Bf) — 5 = Ec L:JIE - kglEf

That is, E is covered by {E‘Z’C ke N}, a countable cover. By definition of p*,

W (E) = inf > i (EF) < 'Zlu (E7)

(oo} oo
) k=
Since all the terms of the infinite sum are positive, we can re-arrange the terms
to get

w(EE) =S5 (BE) <Y (1 (B + 55 ) = Yow' (i) +e
i=1

oo
ik=1 i=1k=1 i=1

Now, we can pass the limit to € to get
o0
p(E) <Y ou (B)
i=1

]

The idea over here is to take a covering and bring it down to a different
family within S.

Notice that the definition of the outer measure does not assume that the
domain is a o-algebra. With slight modifications, however, a subdomain of p*
forms a o-algebra: let us first call a set £ C X measurable with respect
to p* if, for any A C X, we have p* (4) = p*(ANE) + p* (AN E°). Note
that p* (A) < u* (AN E) + p* (AN E°) is always true because A = ANX =
AN(EUE®)=(ANE)U(ANE°) and because p* is finitely subadditive.

Proposition 20 Let E C X. If u* (E) = 0, then E is measurable with respect
to p*

Proof. Let A C X. Since pu* (AN E) < p* (E), we must have pu* (AN E) = 0.
Again, by monotonicity, p* (A) > p* (ANE°) =p* (ANE°)+u*(ANE). =

Such a set, which we will call 91, of ;*-measurable sets form a o-algebra. The
proof of this fact is broken into a bunch of lemmas. First, note that p* (4) =
p* (AN @)+p* (AN @°) so that p* (&) = 0 so that & is measurable with respect
to u* and hence @ € M. Also note that if E is measurable with respect to p*,
then E€ is measurable with respect to p*, by simple commutativity of the real
numbers under addition.

Lemma 21 If Fy and E5 are measurable with respect to p*, then E1 U Es is
measurable.

13



Proof. If E; is measurable, then for any A, u* (A) = p* (AN Ey)+up* (AN EY).
Also, again, since Es is measurable, then letting B = AN EY, we have, for all B,
w* (B) = u* (B OV Ez) + * (B 1 ES). Thus, pu* (A) = u* (AN By) + p* (AN ES)

=p* (ANE) +p*(ANEfN Ey) + p* (AN Ef N ES)

=p* (ANE) +p* (ANE{N Ey) + p* (AN (ELU Ey)°)

If A, E; and E» have a non-trivial intersection, then AN (E; U Ey) = AN
XN(EyUEy)=AN(EUES)N(ELUE,)

=(ANE))U(ANES)N(ELUE,)

=(ANE)U(ANE{NE)U((ANESfNEs)

= (ANE}) U (ANE{NE,) so that p* (AN (ELUE,)) < pu*(ANE)) +
w* (AN E$N Ey) by finite subadditivity, with equality if Fq and Es cover A.
Thus, p* (A n (E1 @] Ez)) + p* (A N (E1 U EQ)C)

= p* (4)

Thus, p* (A) = p* (AN (E1UEs)) +p* (AN (E1 U E)°). =

Lemma 22 If Ey and Ey are measurable with respect to p*, then E1\Fs is
measurable with respect to p*.

Proof. We’ve already proved that for E1,FEs € 9, EF1 U Ey € 91 and that
E$,ES € M. Since E1\Ey = By N ES = (E$ U E»)°, we have that E1\Fy € M
[

Lemma 23 If Fy and E5 are measurable with respect to pu* and disjoint, then,
for every A, u* (AN (F1UE)) = p*(ANEy) +pu* (AN Ey)

Proof. Since E; is measurable, we have p* (AN (Ey U Ey)) = p* (AN (Ey U Ey) N Eq)+
,U,* (A n (El U EQ) n Eg)

= p* (AN ((By N Ey) U (B2 N Ey))) + p (AN ((Er N E3) U (Ep N ES)))

Since F1 N Fy = @, we have p* (AN (U Ey)) + p* (AN ((Ey N ES) U @))

— 1 (AN By) + i (AN (B 0 ES)

Again, since By N Ey = @, we must have that 4y C ES. Thus, B4 NES = E;

so that u* (AN(ELUE))=p* (ANE)+pu*(ANE;) m

By induction, the above holds for n sets.

Lemma 24 If {E; : i € N} are measurable with respect to u*, then so is their
UNLON.

Proof. Let i
—1 n n
By = E\| JEi and F, = | JE: = | JEi
i=1 i=1 i=1

F,, is measurable because finite unions are measurable. Now set

E = DEZ-
i=1

14



We need to prove that p* (A) = p* (AN E)+p* (AN E°) ie., Eis p*-measurable.

We know that F,, C E for any n so that E¢ C Fy. Therefore,

p(A) = p(ANE,)+u (ANEY)
> p(ANE,)+p" (ANE°)

I (V) e

Since Ei’s are disjoint, we then have, by Lemma 23,

\%

= Z“* (A N E,) + " (AN E)
i=1
Now, we also know that
i=1 i=1 i=1

so that, by countable subadditivity, we have

oo

*(ANE) i (AmEi>:>u*(AmE)+u (AN E°) Z (AmE,-)+M

o (30 (0)) a0

— Z“* (ANE) +p* (AN E°)
=1

w(ANE)+p (AN E°)

Thus,

=
*
=
vV

Y]

The other inequality holds trivially. =

Thus, the collection of all measurable sets 99t under u* forms a o-algebra. It
can now be shown that 7 = p*|y, forms a (complete) measure on 9. For this
to be valid, we need to prove that a family of pairwise disjoint sets {F; : i € N},

I <UE> =D _H(E;

One inequality of this holds always because of countably monotone property.
For the other side, by Lemma 23, for a (finite) family of pairwise disjoint sets

{E;}, for any A,
i=1 i=1

15
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Substituting A = X, we have

w* <UEZ> = Z/i* (E:)
i=1 i=1

so that we can replace n with oo, which is what is needed. Thus, & is a measure.

To prove that 7 is complete (given a measurable subset E of measure zero
and a subset F' of E, the measure of F' is zero), note that u* (E) = 0, so that
p* (F) = 0 by countable monotonicity. For a fixed A C X, p* (AN F) =0 and
p* (AN F¢) < p*(A) so that p* (A) > p* (ANF°) + p*(ANF). Thus, F is
measurable with respect to pu*

To summarise, we have a function p defined on S. From this, we constructed
and outer measure u* over 2% and from this, we constructed 7z defined on 9.

Do p* and p always agree on S? Not necessarily so, as we are forcing even
definition of the empty set.

Think of S as a collection of intervals, with ; measuring length of the interval.
It would be really nice if p* did the same and even better when S C 9 (i.e.
7ilg = p). When does this happen? The answer to this is given in the Lebesgue-
Carathéodory Theorem.

1.3.1 Lebesgue-Carathéodory Theorem
Call S a semi-ring if
1. ABeS= ANnBeS
2. A, B € S = 3 a finite disjoint family {C; : 1 <4 < n} in S such that
A\B = ¢
i=1

The last requirement is much weaker than requiring A\ B to be in S. Also,
note that empty unions are allowed.

Example 25 Let S be the collection of all intervals of the form [a,b). Half
open intervals are needed to ensure the 2nd condition holds. For example, for
[e,d) C [a,b) with ¢ < a and d < b, then [a,b)\[c,d) is another half open
interval. However, if we had only open intervals and an interval B was properly
contained in another A, then A\B would have been half open so that S would
not have been closed under relative complements.

Problem 26 Let X andY be two non-empty sets and let Sx be a semiring on
X and Sy be a semiring on' Y. Denote Z = X XY and

SZ:{AXB:AESx,BGSy}

Prove that Sz is a semiring on Z

16



Solution 27 Let A,B € Sz. Then, we can write A = A1 xB1 and B = Ay X Bo,
where Ay, Ay € Sx and By, By € Sy. We know that

(A1 X Bl) N (AQ X BQ) = (A1 N Ag) X (Bl N Bz)

Since Sx and Sy are semi-rings, therefore Ay N Ay € Sx and By N By € Sy.
Let A= Ai1N Ay and B=B1 N By. Then, ANB = A x B, where A € Sx and
BeSy. Thus, ANB € Sy.

Next, let A,B € Sz and so, A= A1 X By and B = Ay X By, where A1, Ay €
Sx and B1,By € Sy = 3 a finite disjoint family {C; : 1 <i<n} C Sx and
{D;:1<i<m} C Sy such that

Al\AQ = UCZ and Bl\BQ = UDZ
i=1 =
Now,

A\B = (Al X Bl) \ (A2 X BQ) = ((Al\AQ) X Bl) @] (Al X (Bl\BQ))

(e o) (o (U0

Note that Al = (Al\AQ) U (Al n A2) and Bl = (Bl\BQ) @] (Bl N Bz) so that

A\B = ((Uc) ((B1\B2) U (BlmBz)))U<((A1\A2)U(A1 N As)) x (01)))
=1

The first term becomes

() ) (3) )

The second term becomes

()0 (00

For the first term, note that Bi\Bs is disjoint from By N By so that the first
term, which comprises of sets each from Sx and Sy, is a disjoint union of two
sets in Sz. Similarly, the other term is a disjoint union of two sets in Sz. All
mn all,

v (0] (B (0)

which is a union of disjoint sets, so that the second axiom holds. If we allow
for empty unions, then @ € Sy

17



If S is a semi-ring, we can define Rg to be the collection of all finite disjoint
unions of sets from S. Then, Rg is a ring i.e. a collection of sets closed under
relative complements and unions.

Proof. A€ R =— A\A € Rs — & € Rs. Let A,B € Rg. Then,
I{A;:1<i<n},{B;:1<i<m} CS such that

i=1 i=1

and AymA] :QZByﬂB] fOI'Z%j Then,
AB=ANB =] (4 nB°)=JC
i=1 i=1

Note that C; NC; = A;NB°NA; N B° = & so that A\B € Rg

Generally, the union of two collections of disjoint sets may not be disjoint.
In order to make sure that AU B is in Rg, note that AUB = (A\B)U(AN B)U
(B\A) is a disjoint union. Thus, to show that AU B € Rg, we need to show
that AN B € Rg for A, B € Rg:

ANB=2U(ANB)

=(ANA°)U(ANB)

=AN(A°UB)=AnN(ANB°)°

= A\ (A\B),thus ANB€Rs =m

Lemma 28 Let S be a semiring and p : S — [0,00] be a pre-measure. Then,
u extends to Rg

Proof. Let 71 : Rg — [0, 0] be the extension of p. If A € Rg, then

for disjoint A;’s in S. Define w (A) = u (A1) + ... + p (4,). To show that this is

well-defined, let
A=JAi =B
i=1 i=1

for disjoint A;’s and B;’s in S. Note that

m

Ja = Un
i=1

=1

- AijAi:Ajﬁ[]Bi
3 =1

=
—

s

I
—

K2

18



Then A; N By, for every k is in S. That is, {A; N By :1 <k <m} C S. This
collection is also pairwise disjoint. Then, u(A;) = p(A; N By) + p(A4; N Bs) +
et (AJ n B’rn) so that

n m

S ou(A)) = 3 w4 N B,

j=1k=1

The same argument can be repeated with B replaced with A and we can get
the same for

m
> n(By),
k=1
except with the summation reversed. Let us do this.
n m
Ua = Us
=1 =1

=1 =1

n
= B, = U (Bl N Ak)

=1

Then, Ax N B; for every k is in S. That is, {Ax N B; : 1 <k <n} C S. This
collection is also pairwise disjoint. Then, p(B;) = p(B; N A1) + 1 (B; N Ag) +
. + (B N Ay) so that

m

ZM (Bi) = ZZM (Ax N B;)

i=1 i=1k=1

This and the previous double sum tells us that

so that @ is well-defined.

P1 Since p is a pre-measure, i (&) = pu (@) = 0.

P2 We need to show that @ is finitely additive. Let {A4; : 1 <i<n} C Rg
be a pairwise disjoint collection. Since A; € Rg, HB](-Z) € S such that

A = GB}”
j=1

with B; N B; = @ for ¢ # j. Then,

#(Ua) -r (UU) - 30 ()
i=1 i=1j=1 i=1j=1

19



" is disjoint. Thus,

I <0Az> = iﬂ (A

Before the next property is established, we note that 7 is monotone: let
A C B with A, B € Rg. Then, 3A;, B; € S such that

since each B](.

m

A= OA, and B = UBJ
j=1

i=1
Now, we have that

m

A=Y (4 = (UA>andu B) =Y u(B)=n (U

Jj=1

where the first equalities follow from definition of &z and the other by finite addi-
tivity of u, a pre-measure. By countable monotonicity (hence finite monotonicity
of ) and finite additivity

UdicUB; = D u(A) <> u(By)
i=1 j=1 j=1

1=

so that 7w (A) < (B).
P3 Let A € Rg,

AC GAi
=1

and A; € Rg. We need to show that

< Zﬁ (4;)
k=1

For this, define

n—1 0o
ﬁn = A,\ U A; € Rg, A= U/L which gives us i (ﬁn> <u(An)

i=1 i=1

Next, note so that Zn € Rg so we can let

Uz

A=l

k=1

where C’,gi) are pairwise disjoint and C’,gi) € S for each k. Then,

oo My

ACUA CUUC(

j=1k=1
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The latter is still countable. Thus, WLOG, we can say that A; € S is disjoint.
Since A € Rg, we must have

where B;’s are from S and are pairwise disjoint. Then
o0
A4 < Ya
i=1
m o0
= UBclJ4
i=1 i=1

m )
— BkmUBiCBkmUAi

1=1 =1
— B, C U (AZ- N Bk)
=1

— Bk Si AﬂBk.

where the last line follows since p is a pre-measure. By definition of 1,

(A= n(B) <> > w(AinBp) =Y n(AinBy)=> pu(A
=1 i=1

k=1i=1 i=1k=1

where the last interchange of summations is possible since every summand is
positive and finite. m

With all this machinery, we can finally answer the question we set before
the beginning of this subsection.

Theorem 29 (Lebesgue-Carathéodory) Let S be a semiring and pu: S —
[0,00] be a pre-measure. Then, if we define p*, outer measure, A, a o-algebra
and i = p*|gy, we will have (a) S C A and (b) & and p agree on S.

Proof. By Lemma 28, instead of the semi-ring S, we can just as well use
the ring Rg. Let A € Rg. We want A € . That is, p* (E) = p(ANE)+
p(A°NE) for every E C X. Fix E C X. By definition of outer measure p*
(properties of infimum), for any € > 0, we can have

EcC OEZ = u*(E) > ip(E
i=1

i=1
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with F; € Rg. Since E;, A € Rg, we can have E;\A = E; N A° € Rg and
E;NA € Rg. Then, p(E;) = p(E\A) + p(E; N A) so that

> _n(E) D> w(EiN A+ (BN A)

=1 =1

> (BN A%+ p* (EN A)
=1

i (B\A) + 1" (E 1 A)

Y

Y

That is,
p(E)+e>Y pu(E)) > p* (E\A) +p* (EN A)
=1

Since this inequality holds for any €, we can let it go to zero and we will then
be done (the other inequality holds, as well). Thus, A is p*-measurable. That
is, A € 2.

(b) If u(A) = oo, then m(A) = p(A), trivially. Assume otherwise. We
divide the proof into two steps: for any A € 2, @ (A4) < u(A) and, conversely,
p(A) <7 (A). The first is immediate: to recall,

i (B) = inf Y ()
i=1
where inf is taken over {E; : i € N} C S such that this family covers E. Since

A C A is a covering of itself and since u* (A) = (A) for A € A, then @ (A4) <
w (A). For the second inequality, let

Ac A
i=1
with A; € S for each 7 and let

1—1
B; = A\ 4.

n=1

Then,
i—1 j—1
B,NB; = <AALJAk>rW<Aj\LJAm>
k=1 m=1
i—1 j—1
= An(4nA;n (4, =2
k=1 m=1

since the index A; N A¢

mo

u(U&)gE}Gﬂé}]M&)
i=1 i=1

i=1

= @ for some 1 < mgy < j. Thus,
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since B; C A; for each i. We will be done if we can prove that

oo [e.e]
U =Ua
=1 i=1

Since B; C A; for each i, we must have

o0 (o]
UBic | J4i
i=1 i=1
For the converse, let
o0
x € UAZ
i=1

Define I = {j:xz € A;} C N. By the well-ordering principle, I has a least
element, say m. Then,

o0
T€B, = z€ UBi'

i=1

so that both sides of the inclusion hold. m
For example, consider the collection S = {[a,b) : a,b € R} for subsets of R

and define p([a,b)) = b — a. Then, we can have complete measure i defined
on some o-algebra M and my ([a,b)) = G ([a,b)) = b — a and m* is the outer
measure, the intermediate step. Such a measure is given a special name, called
the Lebesgue Measure and is covered in the next section.

1.4 Lebesgue Measure

Let X = RP for some integer p. Define a half-open rectangle R = [a1,b1) X ... X
[ap,bp). Such a collection of R’s forms a semi-ring, as already been discussed
for p = 1. The pre-measure p on such a semi-ring may be defined as the volume
of each half-open rectangle p : S — [0,00] by p(R) = (b1 —aq) ... (b, — ap).
It is easy to see that p (@) = 0 and that p is finitely additive. Countable
monotonicity requires some work. Assume p = 1. Our goal will be to extract a
finite cover.
Let

[a, b) - [ai, b,)

s

=1

and let € > 0. There exists a j such that b — e = b;. Define gj = b; + ¢ for only
this j and leave the others fixed. Similarly, there exists an i such that a+¢ > a;.
Define a; = a; — €. Then, the collection

{@MEJ:kEN}

covers [a, b] so that we can have a finite subcover

{@@E):lgigN}

23



and so
N~ N oo
b—agZbk—&'k:Zbk—ak+2e§2bk—ak+26
k=1 k=1 k=1

Since this is true for every e, we can let it tend to zero. Thus, from this pre-
measure on the semiring S, we can construct an outer measure on 2R and use
that to form a measure on a o-algebra 9.

This argument can be generalised.

Problem 30 Let f: I — R be continuous for any interval I C R. Prove that
if f is increasing and continuous, then v ([a,b)) := f (b) — f (a) is a pre-measure
on the semiring S of half-open intervals [a, b)

Solution 31 Let a,b € R and a <b. Then, f(a) <

Hence the function is well-defined. Also, since |a,

a € R, then v ([a,a)) = f (a) — f (a) =0. Thus, v
Now, let

@ is an interval for any

f(b) so that v ([a,b)) >
)

a)
(@
= [a,b) = UE = U [, B;)

where {E; :1 € N} C S and E; N E; = @. If the E;’s are already ordered, then,

since the union of two disjoint intervals Iy and I is an interval if inf Io = sup I

we can have a = a1 < 1 =a3 < Py =a3 < ...=a, <[, =0b. IfE;’s are
n n

not ordered, then for k = 1,...,n, let ap = millclai, b = mi]?ﬁi. It follows that
= i=

we have the chain a = a1 <by =ay <by=a3<..=a, <b,=0b and

v(E) = f)—fla)=Ff0n)+ > fla)= fla;)—
1=2 =2

n n n n

= D0 fla) =3 (f(b) = f(a)) = v(E)

i=1 i=1 =1 i=1

Thus, v is finitely additive. We prove that v is monotone: let [a, b) C [e,d) with
¢ <a<b<d Then, by monotonicity of f, f(b) — f(a) < f(d) — f(a) <
F(d)— 1 (c). Thus, v([a,t)) < v([e,d)).

These two combined tell us that v is finitely monotone. We now prove that
v is countably monotone.

Let

UE —U ai;bi)

Let € > 0 so that, by continuity of f, for every e > 0, we can have we can
have d; > 0 and § > 0 such that a; < 0; + a; = f(a;) — f (a; — 6;) < 57 and
b—6<b=f(b)—f(b-10)<5



Now,

s
s

[a,b— 0] C [a,b) C | J]ai,bi) C

1 %

(a; — d;,b;)

% 1

That s,
[a,b—é] C (ai —(Si,bz')

1=

—

Since [a,b— 0] is compact and

s

(a; — 0;,b;)

1

.
Il

s an open cover, we can extract a finite subcover, say
n
la,b— 6] € | (@i — d:,b:)
i=1

By properties of v already established (monotonicity and, therefore, finite sub-
additivity), we have

FO—=08)—f(a) <Y f(bi)— f(ai— )
i=1
Now,

f®)=f(a) < f(b—é)—f(a)+g

IN
~
=
N
|
~
—
&
>,
N
~—
+

Letting n — oo gives us

We can now let € — 0 to get the required countable monotonicity.

For f (t) =t, this defines the Lebesgue measure.
As of now, the pre-measure i defined in the beginning of this section is
undefined on single points. However, we can extend this p to the Lebesgue
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measure m,, on the o-algebra 9, in which case m, ({a}) = 0 and m, (4) =0
for any countable A. The measure m,, is also translation invariant: m, (a + A4) =
m, (A) if A € M,,. In particular, my (Q) = 0 and, therefore, my (Q°N[0,1]) = 1.
This example shows that everywhere dense sets have zero measure.

Problem 32 Let X be any non-empty set, S C 2% and p : S — [0,00] be a
function such that there exists a o-algebra A and a measure 7 on A such that
S C A and for any A € S, we have p(A) = w(A). Is it true that p is a
pre-measure?

Solution 33 No. We are not guaranteed that the empty set is in S, so we
cannot even say that p (@) = 0. It is true that p is finite additive and countably
monotone by definition (since every measure is) but the very first requirement
for a pre-measure may fail to hold.

Definition 34 Let (X, 7) be a topological space. We call G a Gy set if

G =(0;
i=1
where O; is open for each i. We call E a Fy-set if
(oo}
E:UE
i=1

where F; is closed for each i.
These sets are complements of each other.
Theorem 35 The following are equivalent
1. EeMm,
2. Ve > 0, there exists an open O with E C O and m, (O\E) < €
3. There exists a G5 set G with E C G and m, (G\E) =0
4. Ye >0, there exists a closed set F with F C E and m, (E\F) < ¢
5. There exists an Fy, set F' with F' C E and m, (E\F) =0

Proof. (1 = 2)
Let £ € M, with m, (E) < co. Then, by Lebesgue-Carathéodory Theorem,
my, (E) = my (E) so that

m, (E) = inf ZVolume (R:)
i=1
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By the properties of infimum, we can choose a family {R; : ¢ € N} with
ng(E)>>§:Vanm(R0—f§
i=1

Enlarge each R; to an open El so that

€

Volume (EL) = Volume (R;) + ST

Then,
0=|JR
i=1

is a countable union of open sets and is, therefore, open with

mﬂ@ﬁf}wﬁo:fxmﬂm+?;):§+§ﬁA&kwwm+e
i=1 =1

1=

That is, m, (O\E) =m, (0) —m, (E) <e¢

If m, (E) = oo, we can take Rj = [~27,27) x ... x [—-27,27) and let E; =
E N R; so that my, (E;) < oo. Now take open sets O; with E; C O; such that
m, (0O;\E;) < 57. With this, we can have an open set

0= G()i with FC O = O\E C fj (O\E;) = m, (O\E) < imp (O\E;) < ¢

i=1 i=1 i=1
, we can have E C Oy for each k so that

G:ﬁ@DE:émﬂﬂﬂgm“%VD<%:ﬁmﬂﬁmzo

i=1

3 = 1)

We know that there is a G5 set G with £ C G and my (G\E) = 0 (note the
use of star here!). Thus, G\ E is measurable with respect to m; by Proposition
20 and so, G\E € 9M,,. Since G is the union of open sets, clearly G € 9t,. Since
E C G, we have E = G\ (G\E). Thus, E is measurable.

(1 = 4)

Let E € M, and let € > 0. Since M, is a o-algebra, we must have £ € 9M,,.
Then, there is an open set O with E¢ C O and m, (O\E°) < e. Now, E° C
O = 0° C E® = E. That is, m, (O\E°) = m,, (O) —m, (E°). Now, note that
m, (X) = m, (O) + m, (O°) and, similarly, m, (X) = m, (E) + m, (E°). We,
therefore have m, (X) —m, (X) = m, (0) + m, (O°) —m, (E) —m, (E°) =0 so
that m, (O\E) = m, (O) — m, (E°) = m, (E) — m, (O°) = m, (E\O°). Since
O°¢ is closed, by (2), the proof is done.

(4 = 5)
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Let € = L. Then, there exists a closed set F}, with F,, C E and m, (E\F,) <

F= GFn
n=1

%. By definition,

tells us that F is a F,-set. Also, since F,, C F so that E\F C E\F, and so,
by monotonicity of m,, m, (E\F) < m, (E\F,) < L. Letting n — oo gives us
m, (E\F) <0. That is, m, (E\F) = 0.

5=1)

We know that there is a F;, set I with F' C £ and mj (E\F) = 0. That is,
E\F' is m;-measurable and so E\F € 9,. Moreover, I € MM, because it is the
intersection of open sets. Since F' C E, we have E=FENX = EN(FUF°) =
(FUE)N(F°UE)=FU(ENF° = FU(E\F). Since E\F, F' € M, it follows
that B = F U (E\F) € M, since any o-algebra is closed under unions. Thus,
E is measurable. m

This tells us something very important:

Theorem 36 (Regularity of Lebesgue Measure) Assume that E € 9,.

Then, m, (E) W ing {m, (O) : O is open and E C O}

© sup{m, (K) : K is compact and K C E}

Proof. By properties of infimum and (2) in Theorem 35, The first equality
follows directly. For the second equality, by (4) in Theorem 35, we need this
only for closed sets E. Let R; = [—Qj, Qj] X ... X [—2j, 2j] and let K; = ENR;.
Then, K; is compact. Note that K; C Ks C .... Then,

E=|JK = m,(E)= lim m, (K,) = supm, (K,)
=1

which establishes the second equality. m

1.4.1 A non-measurable Set

And now, we will construct a non-measurable set £ C [0, 1] such that E € I,,.
Call z,y € [0,1] equivalent if x —y € Q. Thus, this relation partitions [0, 1].

That is,
[0,1] = J4a

where « is a representative of each equivalence class. That is, if x,y € A, then
x —y € Q. In this indexing, the Axiom of Choice is needed (there exists a set
C C [0,1] such that for every a, C has exactly one element from A,). This C
is not measurable. Assume that it is.

If ¢g,r € Q with g # r, then C 4+ ¢ and C + r are disjoint because if z €
(C+q¢)N(C +r), then z =z +q and z = y +r for some z,y € C. Then, z ~y
but that would mean x = y so that ¢ = r, a contradiction.
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Thus, C'+q and C'+1r are two distinct measurable sets. That is, C+q € 9,
for every ¢. It is easy to prove that

U ©€+gcloz2

qeQN[o,1]

which is a countable union of disjoint sets. Thus,

2 = m(0,2)=>m, [ J(C+q)

q€Q
= > m(Ct+g =) m,(C)
qeQ q€Q

which is either 0 or infinity. The latter is a contradiction so that m, (C) = 0.
However,

.1cJ(C+g = 1=m,([0,1]) <> m, (C) =0
qeQ q€Q

another contradiction.

Thus, C' is not measurable.

Had it been m} instead of m,, we would not have been able to use countable
additivity of measure.

In fact, every set of positive measure contains a non-measurable set.
Proof. As above, let E C R be a measurable subset of £ € 9. Call z,y € FE
equivalent if x —y € Q. Let C' be the set of representatives for this equivalence
relation. C' is not measurable. Assume that it is.

As above, C + q and C + r for g, € Q are two distinct measurable sets.
That is, C + ¢ € M, for every g. Consider C + gmod 1 for every ¢ € QN [0, 1).
Then,

U (C+qmod1)=10,1]
q€QN(0,1]

so that

my ([0,1]) = Z my (C' 4+ gmod 1) = iml (©)
i=1

¢€QN(0,1]

If C were measurable, then m; (C) > 0. However, the infinite sum of repeated
non-negative numbers is either 0 or infinity, neither of which is equal to 1 =
my ([0, 1]) n

Moreover, the Axiom of Choice is, in fact, equivalent to existence of non-
measurable sets.

All in all, this says that 9, # oR”
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1.4.2 Cantor Set

There is a unique creature called the Cantor set. It is a set with zero measure
and is yet uncountable. It is constructed via an iterative process in which at the
n-th step, we delete intervals C,,. The countable intersection of such sets C,, is
the Cantor Set C. Usually, the C),’s are formed by deleting the middle third
interval at each n-th step but this is allowed to vary. For example, if we consider
deleting middle thirds, then C; = [0,1/3]U[2/3,1] and C2 = [0,1/9]U[2/9,1/3]U
[2/3,7/9]U[8/9,1] and so on. The Cantor set C # @& because 0 € C. Moreover,
C is measurable since we are taking countable intersection of measurable sets.
For each n, it is obvious that m; (C),) = 2"/3"™ (see Problem 37) where the
denominator is length of one interval in ), and the numerator follows from the
number of intervals. Moreover, C C C,,. As n — oo, by continuity of Lebesgue
measure, my (C) = 0.

Problem 37 C is a perfect.

Recall that a set is said to be perfect if it has no isolated points. Thus, we
have to prove that Vo € C, any neighborhood of x contains another point from

C.

Solution 38 Let ¢ > 0. For xz € C, define N, (z) = {y : |v —y| < e}. We need
to show C'N N, (2)\ {z} # @.

Since € > 0, by the Archimedean property of real numbers, AN such 1/3N <
e. Since C; =10,1/3]U[2/3,1]. C3 =10,1/9]U[2/9,3/9]U[6/9,7/9]U[8/9,9/9]
and, in general, for the N-th step, we have

3N=I—1
3k 3k+1 3k+2 3k+3
o= U (5] 5

k=0

and C is formed by the countably infinite intersection of such C;’s. It follows
that x € [5’*}3, %} = Fy (say) or x € [3];%2, %] = By (say). Moreover

3k+1 3k 1 3k+3 3k+2

M) = TN TN TN T ey gy

Thus, if x € Ey, then Ey, C N, (x). If x € Ey/, then Eyr C N, (z).
Now in both cases, in the N + 1 step, Ey is split into
32k 3%k+1 3k+2 3%k +3
3N+1’ 3N+1 3N+1 ) 3N+1

=my (Ey) <e

3j 3j+1] [37+42 3j+3
= [3N+1’ N1 } U {3N+1 » gNFI = E, UEY (say)

and [Sg—f\?z, %} 18 split into

32k+6 3%k+7 32k +8 3%k +9
3N+1 0 gN+L 3N+1 0 gN+L

3j+2) 3(+2)+1 3(j+2)+8 3(j+2)+3
[ 3N+1 0T 3N+I 3N+1 7 3N+I = Ej, UEY, (say),
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for 5 = 3k. That is, replacing the dummy variable, we can re-write Cny1 as
3N -1
3k 3k+1 3k+2 3k+3
Cnr = U 3T 3t | Y| 3T 3N
k=0

Again, note the

1

my (E,) = IN+T

=my (By) = my (B) = my (EY)

If x € Ey, then either x € E} orx € E}/. If x € Ej, then since C C E}! C Ej, C
Ne (z), we must have CN N¢ () \{z} # @. If x € E}/, then since C C E; C
E, C N (z), we must have CN N (x)\{a} # &. Similarly, x € E}, then
either x € Ey, orx € E},. If x € E},, then since C C E}, C E;, C N, (x), we
must have CN N (z) \{z} # @. Ifx € E},, then since C C E;, C Es C N, (),
we must have CN N (z) \ {z} # @. In either case, we have that, for any v € C
and any € > 0, CN N, (x)\ {z} # @.

Theorem 39 C is uncountable

Proof. Assume otherwise. Then, we can let C = {¢ : k € N}. C} is the union
of two disjoint intervals. One of these does not contain c¢;. Let CNC; = Fy
be the set which does not contain ¢;. F} is a union of two parts, one of which
does not contain c,. Call this part (which does not contain ¢p) Fy and so on.
Eventually, we end up with a sequence F, 1 C F, C C where ¢, & Fj. If we
have countably many compact sets and all finite intersections are non-empty,
then the total intersection is non-empty.
Since we have a decreasing sequence of sets, the intersection

F= ﬁFn;«ég
n=1

Moreover, F' C C. That is, if x € F, then = € C. Hence x = ¢y for some N, a
contradiction, since cy € Fiy and F C Fy CC. m

Recall that the Borel o-algebra £ is the minimal o-algebra that contains all
open subsets of R, under the usual topology. Since £ is the smallest o-algebra
on R, we can claim that £ C 9t;. However, the converse does not hold. By
completeness of My, any subset of the Cantor set is in ;. It can shown that
there is such a subset not in £. Moreover, the completion of £ gives 9M; but
the proof of this fact will have to wait for now, until we get into a discussion of
functions acting on Measure Spaces.

Problem 40 C' is totally disconnected set.

Solution 41 We need to show that for every x € C, any neighborhood of x
contains a point from the complement of C. That is, we need to show that
Va € C and any € > 0, C°N N, (x) # @. To begin the proof, we observe that

oo 3" 711

T Bk 1 3k 2
c-U U (B %52 -U U

n=1 k=0 n=1 k=0
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in [0,1]. Again, since € > 0, by the Archimedean property of real numbers, AN
such that 1/3N*1 < e. Note that, at the N-th step, m; (I) = 37N < 3my (I}) =
3=N+1 < ¢. Moreover, x € Ey, or x € Ey. In either case, I,N N, (z) # & since
my (N (2)) = 2e > € > my (I;) and I is in between Ey and Ey. That is, C°N
N (z) £ @.

Problem 42 Suppose that in the construction of a Cantor set, on the n-th
step, instead of throwing away the middle third of every interval, we throw away
middle intervals of length a,, > 0 (a,, depends only onn). Show that, by choosing
the right sequence {a, : n € N}, we can make the measure of the resulting set
to be any number between 0 and 1. Deduce that there exists an open subset of
[0,1] whose boundary has positive measure.

Solution 43 Let z € [0,1]. We want to construct a Cantor set of Lebesgue
measure x. Since x € [0,1], 3 a sequence {b, : n € N} such that

Let
o0
1l—xz= Zan
n=1

where a,, is some sequence dependent on the sequence {b, : n € N}, clearly con-
vergent. Now, begin with [0,1] and throw away

1—&1 1+CL1
2 72

which has Lebesgue measure a1. The resulting C1 is

1—aq 1+aq
= 1.

1—CL1
0
b5

1-— ay
4
so for the left interval, we throw away

l—a1—as 1—ay1+as
4 ’ 4 '

This set has Lebesgue measure as/2. Similarly, the middle point for the right

interval s 3'2“1 , we throw away

<3—|—a1 as 3+ a ag)

The middle point of

18

4 47 4 4
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This set has Lebesgue measure as/2, so in total, we have thrown away intervals

of length as. We are left with

—a] —

1
e - pion

N

1—a1+a2 2—20,1:|

242a; 3 -
U|: + 2a1 —+ a1 an

4 )

For the first set in Cy, we can throw away
as+3—3a;1—a3 az+3—3ai+as

4 ’ 4
:|U |:3+CL1+CL271:|.

4
( l—aj;—az—a3 l—aj—az+tas
8

4

, ) For the
)’. for the ﬂmﬁd’ (5+3a1ga27a3’ 5+3a; gaeras ),.

second, throw away ( ,

and for the fourth, (

)

C3

0,

8 8
3+ai+as+4—az 3+a1+a2+4+a3)
8 8

. This gives us

8

- 1— _ _
a1 ag a3:|u|:

'1—a1—|—a2 3—3a1 4+ as —ag

1—a;—as+a3z 2—2a; — 2as U
8 ’ 8

4 ’ 8

(24+2a; 5+3a; —as —as

}U {3—3a1+a2—|—a3 1—a;]

54+3a1 —as+a3 3+a; —as

4 7 8

_3+a1+a2 3—|—a1+a2—|—4—a3

8 ’ 4
3—|—a1+a2—|—4+a3

oot st

4 i

8

o[

U

Ju

Continuing this way, we observe that we can throw away intervals of total length
ay, at the n-th step. Since [0,1] is the disjoint union of all these open sets and
the intersections of Cy,, we get that

1l=m (C) + Zan
n=1

or that my (C) = x.

In this construction, we note that C is countable intersection of finite union
of closed sets Cy,. Thus, C is closed so that C¢ is open. Since [0,1] = C U C*
and 0C° = CL(C°) — Int (C°) = CI(C°®) — C° = Cl(C°)nC = (C\{0,1}) N
C = C\{0,1}. Thus, my (0C°) =my (C) —my ({0,1}) = my (C). The crucial
point here is realizing that Cl(C¢) = C\{0,1} and this is because for each m,
0C,\{0,1} = CI(I,,) where I, is the disjoint union of the open sets I}gn) for
which my (I,) = ay,.

2 Functions on Measure Spaces

2.1 Measurable Functions

Let (X,2Ux,px), (Y,2y, 1ty) be a measure space and let f : X — Y be a
function. f is said to be a measurable function (with respect to 2A) if the
pre-image of any uy-measurable set is py-measurable. Therefore, for Y = R
and Ay = 9y, f is a measurable function if f~1 ([a,b)) € Ax for all a,b € R.
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This will be shortened to saying that f is uy-measurable or even that f is
measurable, if the underlying measure space is clear. In probability theory,
such an f is called a random variable.

We will only be concerned with real-valued functions.

Theorem 44 Let (X,2A, u) be a measure space and let f : X — R be a mea-
surable function. The following are equivalent

1. f7H([a,b)) €

2. [ ((a,00)) €

3. [ (a,b)) €

4 71 ([a,0]) € 2

5. f7H((—o0,a)) €2
6. f71((—o0,a]) €2

Proof. (1 = 2)
To see this, note that

(a,00) D (a,m) = fjm o) = 1 mﬂUf (|o- =

The set on the right hand-side is a countable intersection of a countable union
of measurable sets, hence measurable. Therefore, f~1 ((a,0)) is measurable.
That is, f~!((a,00)) € A. The rest of the statements are verified in a similar
manner. We only mention their decomposition.

(2=13)

(a,b) = (a,00) N (b, 0)

3= 42”

[a,b] = () (a+ 3.0+ 7)

(4= 571):1 . o

(—00,a) = (—n,a) = ﬂ U 1/m—n,a—1/m]
(5 = 6) n: e

(—00,a] = ﬂ (—oo,a—|— %)

(6 =1) .
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Taking complement on both sides gives us

o= ) (o L),

n=1

Thus, assuming 6, we can have (—o0,b) for some b > a and (—o0,b) N [a, ) =
[a,b) €2A. =

Example 45 Let (X, 2, 1) be a measure space and let f : X — R be defined

by
ro = ={ 4 4]

In this case, f is measurable function if and only if E € A: if f is measurable,
then f~1(0,00) = E € 2. Conversely, if E is measurable, then for any (a,b),
if both 0 and 1 belong to (a,b), then f~(a,b) = X. If either belongs to (a,b),
then f~=*(a,b) = E° or E, respectively. In either case, f~! (a,b) € .

Problem 46 Let (X,2, 1) be a measure space, E € A and p(E) > 0. Define
Ap :={ACE:AeU}. Recall from Problem 11 that Ag is a o-algebra and
that p|g is a measure on Ag.

1. Prove that if f is measurable on X, then the restriction of f to E is
measurable on E

2. Assume p(X\E) =0 and f: X — R is a function such that its restric-
tion to E is measurable with respect to UAg. Is it true that f is measurable
on X 2 If no, what extra condition do we need for this to be true?

Solution 47 1. Let f|y = g and I C R be an interval. Then, g~ (I) =
Y (D)NE. Since f~1 (I),E € A (sothat f~* (I)NE € ) and f~* (I)NE C E,
hence f~* (I)NE € Ap. That is, g~ (I) € Ag. Thus, g is measurable.

2. No. It may happen that f~' (A) C X\E but f~1(A) ¢ A. For example,
consider X = {1,2,3} with A = {@,{1,2},{3},{1,2,3}} and E = {3}. Define
©({1,2}) = 0 and p({3}) = 1. Now define f(x) = x. Then, f restricted
to E is a measurable function. However, f=1(1/2,3/2) = {1} € 2. For the
extension of a measurable function to be measurable, we must have A complete.
That is, when every subset of a null set (a set of measure zero) is measurable.
If my (X\E) =0, then every subset of X\ E is of measure zero and not included
in Ag. Now, extend f by letting f(z) € f(E) if x € X\E. Then, either
f~t(a,b) C E or f~1(a,b) C X\E. In the former case, f~* (a,b) € Ar C A
so that f is measurable. In the latter, my (f ' (a,b)) = 0 so that f~* (a,b) € 2,
making f again measurable.

When is the composition of the two functions measurable? Continuous func-
tions are always measurable so that gives us a lot but the following lemma shows
we can generalise this a bit.
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Lemma 48 Let X be a topological space, F: X — R? and g : F(X) — R
be functions. If g is continuous and components of F are measurable, then
f =goF is measurable.

Proof. Let

F7(a,00)) = {z: f () € (a,00)} = {w: F () € g~ (a,00)}

Then, g~! (a,0) is relatively open in F (X). Thus, there exists an open set
O C R? such that ON F (X) = g~ ! (a,00). Since O is open, we can cover O by
disjoint, open (even half-open work) rectangles {R; : i € N} in RP. Thus,

fHa,00) = {F(z) € F(X)NnO}

{F(m) eF(X)ODRi}
()

= U {z e FT'(R)}

Let us look at the individual pre-image of a rectangle, i.e. at {33 € F! (RZ)}
Since R; = I} x ... x I' and F = (¢, ...,, ), with each component measurable
by hypothesis, then z € F~' (R;) <= = € ¢, ' (I}) for each k so that

xeﬂgpk (I) = f! ﬂ
k=1 k=1

Thus, f~!((a,00)) €A. m

Corollary 49 If f, g are measurable functions, then f+g,af, f.g,|f|, max (f, g)
and min (f, g) are measurable.

Proof. Let f and g be two measurable functions defined on the same domain,

X be a topological space, F : X — R? defined by F(z) = ( (2),g(x)),
A:F(X)x F(X)— Rdefined by A(z,y) =z+y, P: F(X) ( ) — R
defined by P (x,y) = zy, G : X — R defined by G (z) = f (z), S: F(X )—>
R defined by S(z) = az, M : F(X) — R defined by M(x) |z, My :
F(X) x F(X) — R? defined by M, (z,y) = max(f(z),g(y)) and M,

F(X) x F(X) — R? defined by M, (z,y) = min (f (z),g(y)). Then, F and

GG have measurable functions as components and A, P, S, M, M, and M, are
continuous functions. By above lemma, Ao F'= f+g, PoF = f.g, SoG = af,
MoG=|f|, My o F =min (f,g) and M, o F' = max (f, g) are all measurable.
]
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Theorem 50 Let {f, : n € N} be a sequence of measurable functions. Then,
the following are measurable:

inf fo (2); supfu (2); lim inf fo(2) and lim sup f, (2)

neN N —oon> N—>°°n2N
are all measurable.
Proof. First, let us call

f () = supfn (z)

neN
Consider,

7 (~00,0)) ={z: f(z) <a}= {x : Slrlzpfn (z) < a}
Thus, the set becomes
{m:fl()<aVz€N}—ﬂ{x fi(z) <a}
i=1

Now, {z : f; (z) < a} = f; ' ((—o0,a)) is measurable, so we must have
ﬂ {z: fi(x)<a} e

Thus, f~!((—o0,a)) is a measurable set and so f is a measurable function.
Similarly, let

g(z) = inf f, (z)

neN
Consider the set

g ' (a,0) = {z:g(x)>a}= {:c : inffn (z) > a}
= {x:fz()>aV2€N}—m{m fi(z) > a}

Since {x : f; (x)} = f; ' ((a,00)) is measurable, we must have

ﬂ{x fi(x) >al e

Thus, g~* ((a,00)) is a measurable set so that

= inf
9= inl

is a measurable function. Since

inf f, (x)

n>N
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is an increasing sequence, we can have

NI () = 5 e e ()

Since f; (z) is measurable for each i, then
gx (2) = inf fu (2)

is measurable so that

supgn ()
NeN

is measurable. Now, recall that
lim sup f,, () = inf sup f, (z
N—>oon2Nf"( ) Nzonsz"( )
Then, f, (z) is measurable

= sup f, (x) is measurable
n>N

= inf sup f, (z) is measurable m
N20p>N

Corollary 51 If{f, : n € N} is a sequence of measurable functions, and f,, —
[ pointwise (i.e. f, (x) — f(x) for every x € X ), then f (x) is measurable.

Proof. Since f, (x) — f (z), we have

(@) = lim f, (z) = lim_ SUp I () = lim_inf f,(z)

The latter two are measurable. m
What if f,, () — f (z) almost everywhere? Under certain conditions, f (z)
is measurable:

Problem 52 Let {f, : n € N} be a sequence of real-valued measurable functions
on X. For every natural n, define

By = {2 € X :|fu (@) = fag1 (@) > 27"}

Show that if u(Ey) < 27" for every n, then f, is pointwise convergent almost
everywhere on X.

Solution 53 Since pu(F,) < 27" for every n, we have a family of measurable
sets {E,, : n € N} and their union has finite measure,

o0 o0 1
;M(En)<;27=1<00

Then, by Borel-Cantelli Lemma, almost every x € X belongs to at most finitely
many E,’s. In other words, almost no x € X belongs to infinitely many E,,’s.
By definition of E,, fn does not converge pointwise on E, since for e = 27",
there exists no N such that |fn () — foy1 (x)| < 27" for N > n. Thus, for
almost every x € X, f, is not pointwise convergent on at most finitely many
E,,’s, which means that f, is pointwise convergent almost everywhere.
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2.2 Simple Functions

Let us now approximate! For measurable functions, there are many canonical
ways that work but the one with a simple function is what we will study.

Definition 54 A function f : X — R is called simple if there exist measur-
able sets E1, ..., By, such that

f@) =) ¢jxn, @
j=1

where c; are scalars.

These are also called step functions. The measurable sets are not required
to be disjoint. These are called simple because they’re easy to integrate.

Problem 55 Show that a sum, a product, a min and a mazx of two simple
functions is a simple function.

Solution 56 Let f: X — R and g : X — R be simple. Then, 3 measurable
sets By, ..., By and Fy, ..., F,, such that

n m
f= ch~XEj and g = Zdi'xﬂ'
j=1 i=1

where Ej = {r e X : f(z)=c¢;} and F; = {x € X : g(x) =d;}. We can as-
sume that c; # c; fori # j so that E; # E;. Similarly for g.

Since the intersection of measurable sets is measurable, we have E; N F; is
measurable for 1 < j<n and1 <k <m.

Recall that the domain for the sum and product of two functions is the inter-
section of the domains. Also recall that XE,nF, = XB, T X5, = XE,XF,- Then, if
we let ¢ +d, = ar, and ¢, =0 and E, = @ for k >n=min{m,n} ord, =0
and Fr, = @ for k > m = min{m,n}, then

max{m,n} max{m,n} max{m,n} max{m,n}
9= @iXpar = D, GXmt+ D, @GiXm— D, GiXgXg <O
i=1 i=1 i=1 i=1
Moreover

max{m,n}

max (f?g) = Z max (C’i’di) XE,‘,I'TFJ‘
=1

and,
max{m,n}

min (f?g) = Z min (Ci’di) XEq‘,ﬂFJ‘

i=1
are both finite so that the sum, product, min and maximum of simple functions
is simple. Similarly, for f.g where (f.g) (x) = f(z)g(x), if we let cpdr, = by
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and ¢y, =1 and E, = @ for k > n = min{m,n} or dy, = 1 and F, = & for
k > m = min {m,n}, then

max{m,n}

fa= Y biXpnr <

i=1

2.2.1 Approximation of Measurable Functions

Lemma 57 Assume that f : X — R is measurable and bounded (i.e. |f (z)| <
M for every x € X ). Then, Ye > 0, 3 simple o, with ¢ < f < 1 such that

o (2) = ()] <€V

Proof. Let € > 0 and Vz, we know that f (z) € [-M, M + 1). Denote ¢ = —M
and d = M + 1. Take yo = ¢ < y1 < ... < Y, = d such that yr —yr—1 < €
for each k. Then, each X, = f~![yx_1,ys) is measurable. Note that X}’s are
disjoint. Define

¢ (z) = Zykfl'XXk (2)
k=1

and

Y (@) = ykxx, (@)
k=1

Since f(z) € [e,d), Ik such that yr—1 < f(x) < yg. That is, if z € Xy,
then ¢ () = yr—1 < f(x) < yp = ¥ (). Thus, ¢ < f < 9. Moreover, since
lyk—1 — yi| < €, we must have |p (z) — ¢ (z)| < e Vz. m

Theorem 58 Let f : X — R be measurable. Then, there is a sequence {,,}
of simple functions such that

L by, ()| < [f ()]
2. ¢, (x) = f(z) for every x € X

3. If f >0, then v, (z) / f(x). That is, for a fixed x, the sequence ,, is
increasing and converges to f (x).

Proof. Let E, = {z € X : |f ()] <n}. Then, E, is measurable. By Lemma
57, 3gn, hy in E,, with g, > f > h,, and |g, — hy,| < % For xz € E,,, define

0 fx)=0
¥, () =< max (hy, (2),0) f(x)>0
min (g, (),0) f(xz) <0

and for « ¢ E,, set 9, (z) = 0. This is a simple function since it has finitely
many values and is absorbed in the characteristic function. The values of ¥,, (x)
are obtained by measurable functions; thus v, is measurable, for each n.
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Now we prove (1). Fixanz € X. If z € E,, and f (z) > 0, then h,, () >0
so that h, < f = |¢,, ()] < |f (z)|. If x € E,, and f (z) < 0, then g, () <0
so that f < g, < 0 = |¢,, ()] < |f (z)|. In all other cases, ¥,, () = 0 so
6, ()] < 1 (@)

For (2), there are three cases to consider.

If 0 < f(x) < oo for every z, then N such that |f(:v)| < N so that for
n>Nand x € E,, 0 < ¢, (ac):max n(2),0) < |f(2)] sothat from
0<h() P, (x) < f(x) < n(m)and0<gn() hn (x) < L, we get 0 <
f@) =, (2) <g () i () < L. Letting n — oo, we get f (z) - 4, () — 0
sothatq/) (z) — f ().

If 0 > f(z) > —oo for every z, then 3N such that |f(x)] < N so that
forn > N and z € E,, 0 < ¢, (x )—mln(gn( ),0) < |f ()| so that 0 <
)~ 0) < 1) g (0) < % T, 2) 0, 2) 0.

If f (z) = o0, then define

Then, by definition,

and 1~/)n — f.

For (3), we need special consideration since the sequence 1,, is not necessarily
increasing. This is because the approximations h, and g,, as constructed in
Lemma 57, rely on the nature of f itself. Thus, h,,’s and g,,’s are not necessarily
increasing since f is not. We get our way around: if f > 0, then define

for each n, we must have

|9 (2)] < 1f (2)

Finally, it is easy to see that 0 < f (z) — ¥, (z) < f () — ¥, (z) — 0.
Since hy, and g,, are simple, then so is ¢,,, and so is 1;, and, therefore, b,
is also a simple function for each n. m

n’

Lemma 59 Let f : RP — R be a (measurable) function. Let E € My,
m, (E) < oo. Assume that {f, : n € N} is a sequence of measurable functions
with f, () — f(x) Vo € E (i.e. pointwise). Then, Ye > 0, § > 0, there exists
A C E with A € M, such that |f, — f| < e on AVn> N and m, (E\A) <§
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A is not necessarily closed. Hence it differs from what we have established in
Theorem 35. That is, the existence of a closed set A such that m, (E\A) < ¢.
Although this doesn’t necessarily matter, as will be clear in the proof.

Proof. Note that f, is measurable and

= lim = lim su = lim inf
f n—>oofn Nqoonzgfn n—>oon2an

so that f is also measurable, hence the brackets in the hypothesis. Define
E,={zeRP:|f(z)— fr(z)| <eVk>n}

This set is measurable because both f,, and f are measurable. That is, E,, € 91,,.
Note that F,, C E, 1 for each n > 1. Define

GEJ =F
j=1

so that

my, (E) = lim m, (E,)
Hence 3N such that Vn > N, m,(E) < m,(E,) +J for n > N and, so,
m, (E\E,) < for n > N. Setting A = Eny1 establishes the lemma. m

Theorem 60 (Egoroff) Let f : R? — R be a measurable function. Let
E e M, m,(E) < co. Assume that {f, :n € N} is a sequence of measur-
able functions such that Vo € E, f, (x) — f(x) pointwise. Then, 3 a closed
F C E with my, (E\F) < ¢ and f, — [ uniformly on F.

This theorem holds in more generality for measure spaces. Thus, up to a
measure €, pointwise convergence implies uniform convergence.
Proof. By Lemma 59, for a fixed n, we can find A,, C F and N (n) such that
m, (E\A,) < 557 for n > N so that Vk > N (n), |f — fi| < L on A,. Now let

A= ﬁAJ—
j=1

A may not be closed! Then,

m, (E\A) = m, (U (E\An)>




Our goal now is to show that f, — f on A uniformly. This is written as
fn = f on A. That is, Yo > 0, IM such that Yk > M, |fip(x) — f(z)]| < o
for every © € A. Take n such that % < 0. Then, for every x € A,, we have
|fr () = f(z)] < 1 < o assoonask > N(n) = N(o) Let M = N(n) =
N (o). Then, for a fixed o > 0, we found an M such that Vk > M, Vo € A, we
have |fx (z) — f (z)| < o0, ie. fn, = f.

Now, recall that m, (E\A) < §. By the Regularity of the Lebesgue Measure
(i.e. m,(E\A) = sup{m, (K) : K is compact and K C E\A}) we can find a
closed F' C A with m,, (A\F) < 5. Then, m,, (E\F) <e. m

Problem 61 Show that the conclusion of Egoroff’s Theorem can fail if we drop
the assumption that the domain has finite measure.

Solution 62 Consider the sequence of indicator functions X|_y, ) := [n defined
on R. Then, for z € R,

NI SR = g =
so that f, converges to the constant function 1. That is, to a function1 :R — R
such that 1 (z) =1 for all z, pointwise. However, assume that f, = 1 on some
closed subset F' of R. Choose € = 1, then for k € N, |1 (z) — fr (z)| < 1 holds
when fi () = 1 so that, for the N we should be able to find, given our e =1,
forn > N,
Ep={zxe€R:[1-fi()| <1Vk>n}= (] [-kk=[-N,N]=F
k=N

However, my (R\F) =m; ((—oo, N) U (N,0)) £ 1.
Lemma 63 Let E C RP and f : E — R be a simple function. Then, Ve >

0, 3 a continuous function g : RP — R and a closed set F' C E such that
m, (B\F) <e¢, f(z)=g(x) ifceF

Proof. Let .
f@)=> arxg, (z)
k=1

where we can assume WLOG that Ej are disjoint. Then, we can find a closed
set [}, C Ey such that m, (Ep\Fy) < 5%. Set

F:UFk

k=1

Note the finite union: this ensures that F' is closed. Moreover, m, (E\F) < e.
Set g (x) = ar, when x € Fy. ¢ is defined on F' and it is continuous on F": if
x € F, then Ak’ such that x € Fy,. That is, some neighborhood of z does not
intersect F; for j # k’. Now, the continuity of g is easy to prove. We can now
extend g to a continuous function on R? by setting constant values for the “end
points” of F'. m
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Problem 64 Define

2 ifzel0,1)

. 5 ifzell,2)
F@) =93 21 ifzeza
0 otherwise

For every € > 0, construct a continuous function ¢, : R — R such that

my ({22 f(2) # ¢ (2)}) <e

Solution 65 Let E; = [0,1), E; = [1,2) and E3 = [3,4) and E4 = [4,00).
Then, [ = 2xg, + 5Xg, — Xg, + Oxg, is simple and, therefore, measurable.
Thus, f : R — R is a simple function, so we are guaranteed the existence of

such a continuous function by Lemma 63. We can choose the closed sets Fy,
to be

€ € € € € €
F = [171—1},5: [1,2—27},1?3: [3+?4—2ﬂ and Fy = [4+27,oo)

Then,forF:FluFQUF3UF4 and E = FE1 U FEy;U E3U By,

€ € € € 15
ml(E\F>:§+272+273+274:1766<6
Now, define o, : R — R
(f-2)a if v € (0, %)
2 ifl'EFl
Lg42 ifre(1-41)
5 if:EGFQ
o (x) = %f%x ifo(in,Q)
B Mo, re(3345)
-1 Z'fl'EFg
8 1 32 . € €
-5 -2 difre(d- G4+ 5)
0 otherwise

By construction, ¢, is continuous and E\F ={z : f (z) # ¢, ()}

Theorem 66 (Lusin) Let E C RP and f: E — R be a measurable function.
Then, Ye > 0, 3 a continuous function g : RP — R and a closed set F C FE
such that my, (E\F) <e, f(z) =g (z) Vx € F

That is, a measurable function can be approximated by a continuous func-
tion.
Proof. There are two cases to consider, with F having finite and infinite mea-
sure.

Assume that m, (E) < co.

Since f is measurable, 3 a sequence of simple functions {p,, : » € N} on E
such that ¢,, — f. As shown in Problem 64 and proved in Lemma 63, for
each n, we can find a continuous function g, such that F,, C E is closed and

€

m, (E\F,) < IS
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Note that g, = ¢,, on F,. By Egoroff, there is a closed Fy C E where ¢,, = f
and

m, (E\Fy) < <
Now, let
F= ﬁ F,
n=0
where F), is closed and m, (E\F) < e. On F, we have g, (z) e o, () =

f (z). That is, on F', {g,, : n € N} converges uniformly to f. Then, f is contin-
uous on F. We can then set g = f|p. Then, g is continuous on F. We can now
extend g to RP.

If m,, (E) = oo, we can split E into boxes of side-length 1. Let

o0
E=JB
i=0
and let E; = EN B;. Then,
E=|JE
i=0

and F; for each i is measurable, m; (E;) < 1 and by Problem 46, f is measur-
able on E; and, therefore, 3 a sequence of simple functions {¢,, : n € N} on E;
such that ¢, — f. Again, by Lemma 63, for each n, we can find a continuous
function g, such that FT(Li) C FEj; is closed and

, €
my (Ei\Fr(f)) < ST

with ¢, = ¢,, on FT(f). By Egoroff, there is a closed Fé” C E; where ¢, = f

and
my (Ei\F(gi)) < 2;1
Now, let
FO — ﬁ Fr(zi)
n=0

WEET(L”

where FT(LZ) is closed and m, (Ei\F(i)) < zgr- On F) we have g, (2)
¢, () = f (x). That is, on F®, {g, : n € N} converges uniformly to f. Then,
f is continuous on F(). We can then set g; = fl@@ . Then, g; is continuous on
FO). Now let

h(z) = Zgi (z) xpw () and F' = UF(i) c UE1
i=1 i=0 i=0
Then, g = f|r. This union, however, may not be closed but is, however,

measurable. Thus, we can find a closed set F' C F’ and by Egoroff, a continuous
function g such that m; (F'\F) < €/2 so that my (E\F') < € and g () = h(x)
on . m
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3 Integration

3.1 Integral of Simple and Measurable Functions

The integral is naturally defined using simple functions over a set of finite mea-
sure. To do this, however, we need to ensure that the integral does not depend
on the representation of the simple function:

Lemma 67 Let (X, 1) be a measure space and let ¢ : X — R be a simple
function. Assume that

Z%XA ZkaBk

where {A; :1<j < N} and {Bj:1<j < M} are both pair-wise disjoint and
measurable, and that

N M
U4, =x=JB,
7=0 =0
Then, for every E € 2,
N M
Zaj,u (AJ N E) = Zbk,u (Bk N E)
j=1 k=1

Proof. Note that aju(A; N E N By) = byp (Br N ENA;) for each j, k. This is
because if A; and By, are disjoint, then we trivially have equality on both sides
since we then have 0 = 0. If x € A; N By, then let ¢ (z) = ¢;. Since x € A;, we
have ¢ (z) = a; and ¢ (x) = by, because « € By,. Thus, ¢; = by = a;. Now, Vk,

N N

B, =By,NX =DB,nN UAj U ;N By)

j=1 j=1
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and

M M N N
> bep(BiNE) = Zbk,u N J (4; N By) :Z U (EnA4;nBy)
k=1 k=1 j=1 k=1 j=1
M N
= Zbkz,u ENA;NBy) =YY bpu(ENA;NBy)
k= 1J 1
M N
= ZZaj,u(EﬂAjﬂBk Zaqu (ENA;NBy)
k=1j=1 Jj=1 =
N M
= Zaju <U (EﬂAj ﬁB;J) = Zaju (Eﬂ U (A] N Bk))
j=1 k=1 j=1 k=1
N M N
= Zaju <Eﬂ <A] n UBk>> = Zaj,u(Eﬁ (Aj ﬁX))
j=1 k=1 Jj=1
N
= Y au(ENA4y)
j=1
|

Now, assume that we have a simple, positive function ¢, on X with

N
z) = ZaiXAi (2)
i=1

where {A4; : 1 <1i < N} is pair-wise disjoint and measurable. Then for every
E € 2, we define the integral of ¢ over E with respect to p as follows:

N
/wdu = a;u(AiNE)

E =1

Lemma 68 Let ¢ be a simple, non-negative function with

N
z) =Y aixa, (@)
i=1
Let 11 be a measure and let E € . Then,
/ edp € [0, 00]
E

Proof. Since

/@du Zam (AiN E)

i=1
and each a; > 0 by hypothesis (¢ > 0 by default) m
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Lemma 69 Let ¢ be a constant simple, non-negative function. That is, ¢ (z) =
cVx € E where B € . Let u be a measure. Then,

/wdu = cp(E)

E

Proof. If ¢ (z) = ¢, then ¢ (z) = ¢y so that

/Ewdu=cu(EﬁE)=cu(E)
| |

Lemma 70 Let ¢ and i be simple, non-negative functions with

N
= ZaiXAi (z) and Y (z szXB
i=1
Let 11 be a measure, o, 8 be scalars and E € A. Then,
/ (ap + BY) dp = a/ wdu+6/ Ydu
E E E
Proof. The result will be proven in two steps: first, we will show that the sum

gets distributed and later on, that the scalar product can be pulled out.
We may choose a finite, disjoint collection C; such that

K
z) =Y aiXe, () and ¢ (z Zﬁ X (
=1

Then,
K
=1
so that
K
/E(<p—|—w)d,u = Z(ai-Fﬁi)M(CimE)
i=1
K K
= Zaiu (C:iNE)+ Z/le’[’ (CiNE)
i=1 i=1
/Eeo u+/E¢ 1
Now,

K
/agpdu Zoz a;u (C;NE)) = Z a;p (C;NE)) = /gpdu
E P E

Combining these two facts readily allows for the required result. m
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Lemma 71 Let ¢ and 1) be simple, non-negative functions with

N
= ZaiXAi () and ¢ (z ZZ%XB
i=1

Let 11 be a measure, ¢ <1 and let E € . Then,

/EdeS/Ewdu

Proof. Again, we may choose a finite, disjoint collection C; such that

Zasz and ¢ (z ZB Xe,

i=1
with o; < 8, so that

K

K
/godu:Zam(C’iﬁE Z (CiNE) /wdu
E E

i=1 i=1

Lemma 72 Let ¢ be a simple, non-negative function with

N
= ZaiXAi (2)
i=1

Let 1 be a measure and let E € A. Then,

/ odp = / expdp
E X

Proof. Note that ¢xp is simple and is equal to a; on £ N A; and 0 on E°.
Also, note that EN A1, EN As,...,EN A, E€ form a partition of X. Then,

N
/X‘OXEdMZZ%MAmEHOu(EC) = /E pdp+0 = /Ewdu

j=1

Lemma 73 Let ¢ be a simple, non-negative function with

N
z) = ZaiXA,;
i=1

Let v be a measure and let E, F € A with E C F. Then,
/ pdp < / wdp
E F
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Proof. Follows from Lemmas 71 and 72 because pxz < ¢xpon X. m

Lemma 74 Let ¢ be a simple, non-negative function with

N
() =) aixa, (@)
i=1
Let 11 be a measure and let E € . Then

/wdu=sup{/ Ydp :1p simple, 1 > 0,9 < ¢ on E}
E E

Proof. By Lemma 71

[z [ panvo<vs<e
E E
hence
sup{/ wdu:¢simple,w>07w<gponE}</<pdu
E E

But ¢ = % is a candidate, as well. Hence

sup{/ wdu:wsimple,sz,dJSgponE}Z/Qdu
E E

establishing equality. m

Lemma 74 hints at what the definition of the integral of a measurable func-
tion should be, since we can approximate a measurable function by a sequence
of simple functions.

Definition 75 Let f be a measurable and non-negative function. Then, the
integral of f is defined as

/fdu:sup{/ ¢du:¢simple,0§w§fonE}
E E

Proposition 76 Let (X,2, i) be a measure space, E € A and let f : E — R
be a measurable and non-negative function. Then

/E fp = /X fXpdp

Proof. Let ¥ be a simple, non-negative function such that ¥ < f on E. Then,
Yx g is simple, non-negative function and ¥ xp < fxp on X. Hence

/E fdu

sup{/Ewd,u:wsimple,ng/JgfonE}

= sup{/ Yx gdp Y simple, 0 < < f on E}
X

IN

sup{/ Ydp 1 simple, 0 < ¢ < fxg onX}
X

/X fxedp
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Conversely, if 9 < f on X, then ¢ (x) =0 if € E° and hence ¢ = )x g so
that

/XfxEdu = Sup{/xwdu:wsimple,0<¢<fxls OnX}
< sup{/Xzbdqu i wdu:wsimple,ostfxEonX}
- sup{/xwdu:mimple,oswsfxEonX}
- sup{/XwXEdpzwsimple,ngngE on X}

= sup{/Ewdu:wsimple,O<w<f0nE}:/Efdu

which gives us the other equality. m

In other words, we have just proved that, for a measure space (X,2,u) ,
E € and f: X — R measurable and non-negative, if f is integrable over X,
then it is integrable over any E.

Lemma 77 Let (X,2, u) be a measure space, E € A and let f,g: E — R be
measurable and non-negative functions such that f < g. Then,

/Efdué/Egdﬂ

/fdu = sup{/wdu:wsimple,ogwgfonE}
E E

Proof.

IA

sup{/ wdu:wsimple,0<w<gonE}
E

/ gdp
E

where the inequality follows because we are expanding the set over which supre-
mum is taken. m

Lemma 78 Let (X,%, u) be a measure space, E,F € A such that E C F and
let f: E — R be a measurable and non-negative function. Then,

/Efdué/Ffdu

Proof. Note that fxg < fxp so that

[E fu = /X fXpdn < /X Fxpdn = /F fdu

by Lemma 77. m
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Lemma 79 Let (X,2, ) be a measure space and let f : E — R be a constant,
non-negative function, defined by f (x) = c. Then, Vz € E,

/Efdu =cp(E)

Proof. ¢ < f on E implies 9 < cidg on E for each ¢ where idg is the identity
function on E. This implies

/ Ydp < cp (E)
E

by Lemma 69. This tells us that
/ fd,uzsup{/ Wdp : 1) simple, 0 < ¢ < f on E} <cu(F)
E E
But ¢ = cidg on X is another candidate so

wﬂﬁSam{é¢muw$mM&0SwaonE}=Ajwt

3.2 Integral of Sequence of Functions

Theorem 80 (Monotone Convergence Theorem) Let {f, (z) : n € N} be
a sequence of measurable functions. Assume that f, (x) — f(x) and that f, is
an increasing sequence (i.e., Vx, 0 < f, (x) < fn+1 (z)), then

lim fndu=/ Jdp
E E

n—oo

Proof. Note that f, (x) < f (x) for every n so that

LEWSAMM
me

is an increasing sequence of numbers so that

Also note that

lim h@é/f@

For the other inequality, let ¢ be a simple function with f > ¢ > 0. By
definition,

/fdu:sup{/ wdu:z[}issimple,le/)ZO}
E E
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Then, the reverse inequality will follow if we can show that

lim [ fodp > / iy
E E

n—oo

Take a number ¢ € (0,1). Then, E,, = {z € E, f,, () >ty (x)} C Ept1. Let

oo
E=|JE
=1

If z € E, then f, (z) — f (z) and, for some large n, we have f,, () > tf (z). To
prove this, assume, for the sake of contradiction, that f, (z) < tf (x) for every
n. Then f (z) < tf (x) so that f(z) = 0 and, therefore, f, (x) < tf(z) =0, a
contradiction to the fact that f, () > 0 for all . As an aside, by continuity of
the measure, VA € 2,

lim p(ANE,) =p(ANE)

n—00

Now, since ¢ is a simple function, it can be represented by

P (@)= Y ajxa, (@)

and, for every j,
lim p (A4; N E,) = p(A; NE)

n—oo

so that
N
[tz [ gz [ todu= 3 tan(a;0 B
B En B, =

Passing to the limit,

lim frndu

n—oo En
is bounded, so is
N
Ztaj,u (A;NE,)
j=1

Also, limit can be passed inside summation. So that

n—oo

N
lim fadp >t E lim a;jp(4;NE,) = t/ m
E T E
Jj=1

which tells us that
lim ﬁﬂuzt/uﬂu
E E

n— oo

Now, we can let ¢t — 1. m
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Problem 81 Let {f, : n € N} be a sequence of measurable, non-negative func-
tions. Show that

f(z)= an (2)
n=1

18 a measurable function and

/deMZS:l/andﬂ

Solution 82 Let k € N. Since the finite sum of (non-negative) measurable
functions is measurable, we must have

k
D _fil@)
i=1

measurable. Now, since f, > 0, we must have

k k
lim supii (x) = kli_)n;toi (x)
i=1 i=1

k—oo | 4
Thus,
k
li ;
Jim. ;f (=)

1s measurable. That is,
k

lim Zfi () = f (2)

k— o004
=1

is measurable. Again, since the finite sum of (nonnegative), measurable func-
tions is measurable, we have that

k
Zfz‘ (z)

is measurable. We can then have

k
/X > o)

Since each f; is non-negative, we have

/Xi:fi () dp = zi:/fl (z) du
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by linearity of the integral. Let

k
gk (z) = Zfz‘ (z)

Then, {gn (z) : n € N} is a sequence of measurable functions, g, (z) — f(z)
and 0 < g, (z) < gnt1 (). Thus, by the Monotone Convergence Theorem,

[ sdu= Jim_ [ gudu= Jim | 2;f () dp = lim. Zl [ 5@ du—i [ 5@

Problem 83 Show that the converse of the Monotone Convergence Theorem
fails.

Solution 84 The following is a modification of a classic example, called March-
ing Intervals. For n € N (excludes zero!), define f,, : [0,1] — R as follows

{1 eefo
fan—r () = { 0 otherwise

{1 ee )
fan (2) = { 0 otherwise
Then,

lim fndml =0

n—oo
since the intervals are shrinking. However, f, /> 0 since the sequence is oscil-

lating.

Corollary 85 Let (X,2, 1) be a measure space and let f,g: X — R be non-
negative, measurable functions. Then,

| Gsoan= [ raus [ gan

It is possible to prove this corollary using the definition directly but let’s use
the Monotone Convergence Theorem.
Proof. Let ¢, and 1, be an increasing sequences of simple functions such that

v, /" fand ¥, g. Then, ¢, +, / f+ g so that
[radn = [ tm (o +v)du=lim [ (v, dn

n—

= lim @pdp+ lim / zpndu:/ fdu+/ gdp
n—oo [y n—oo Jx X X

%)



Corollary 86 Let (X,%, u) be a measure space, A,B € A and let f : X — R
be a non-negative, measurable function. If AN B = &, then

/AUdeuz/Afdqu/deu

[ pu- /X Fxaondi = /X (Fxa + fxs) du

since AN B = @. Thus,

/AUde”:/XfXAd’“‘J“/XfXBd“:/Afd“*/deM

Lemma 87 (Fatou) If f, > 0 is measurable, then

i ot [ ez [ (g g 5 )

Notice that there is no mention of the limit of f.
Proof. Let

Proof.

gn (z) = inf f (z)

n>N

Then, gy " and

Mim gy (z) = lim_inf f (z)

By the Monotone Convergence theorem,

dim [ odn= [ Jim oxdn= [ tim it fods

/ gndp < / Fudp
X X

lim inf gNdu< lim inf / fndu

so that

which implies

n—oon>N n—oon>N
and hence
lim gNdM:/ hm gNd,u< hm 1nf / fndu
N—oo X X
That is,
lim inf / f,,Ld,uz/ (hm inf fn> i
n—oon>N x \n—oon>N
]
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Exercise 88 Give an example where equality does not hold and another where
the inequality does mot hold.

Solution 89 Let E =R and consider fn, = X(n nt1) forn € N. Then, f, — 0
pointwise, where 0 is the zero function. However,

/ lim inf fnd,u /()d,u—()<1— lim 1nf/fndu
E E

N —ocon> N—oon>N

If we have a sequence of increasing functions {f, : n € N} such that f, — f,

then
= [ 1

Theorem 90 (Chebyshev Inequality) Let f > 0 be a measurable function
and XA > 0 be a constant. Then,

1
1(Xy) < X/de“

where Xy = {x € X : f(x) > A} = f~1 [\, 0] is a measurable set.

Proof. Since X, C X, we must have

/deuZ/XAfdMZ/XA)\d,uzAM(XA)

Problem 91 Let f be a nonnegative measurable function on X such that

/deuzo

Show that f =0 almost everywhere on X.

Solution 92 Let € > 1 and Y, = {x 1} Since [ is measurable, we
must have Y,, € A and that u(Yy) > 0. Then by Chebyshev’s inequality,

<Yn)s§/xfdu=o

Thus, 1 (Yn) = 0 for every e > --. Now let

Y = GY"

n=1

Then, Y = {z: f (z) > 0} and, by countable subadditivity of pu,
<> u,
n=1
Thus, 1 (Y) = 0. The result follows from Borel-Cantelli’s Lemma.
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Problem 93 Show that Fatou’s Lemma tmplies Monotone Convergence Theo-
rem.

Solution 94 Let{f, () : n € N} be a sequence of non-negative measurable func-
tions with f, (z) — f(x) and 0 < f, () < fny1 (x). We need to show that

Jim [ fdn = /Mu

yLﬁﬁu

as a sequence of positive, real numbers. In general, we have that

We can view

lim sup/ frdp > hm mf / fedp (3)
TL—MDOan E n—

Since fn < fny1 and fr, — f, it must be that f, < f for alln. Thus,

LhwsLmM

for all n. Since this is valid for each n, we must have

Sup/ fkduﬁ/ fdp
k>nJE E

Letting n — oo on both sides gives us

m“w/nws/Mu (4
Since fn, (x) — f(x), we must have

lim inf fk = hm fn =f

n—ook>
so that
lim sup/ fredu g/ lim inf frdp
B N—0k>n

N—=Ok>n

by Eq (4). This and Eq (3) together imply that

lim inf fkdp = lim sup/ frdp

n—ook>n n—oo>

and, therefore

lim fndu— lim 1nf / frdp = lim sup/ frdu

n—oo n—ook ’n*)OOk,>n E
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Then, by Fatou’s lemma, we have the chain

n—ook>n nN—00k>n

lim inf/fkdug lim sup/ fkd,ug/ lim inf fidp < lim inf/fkdp
E E g n—ook>n n—ook>n Jp
(5)

That is,
lim sup/ frdp = lim inf/fkdu: lim / fndu (6)
E E n—JE

n—00L >y n—ook>n

(3) and (6) together imply

lim sup/ fkdug/fdp: lim inf/fkduz lim / fndu
n—oOp>n JE E n—ook>n | p n—oo | p

Thus, (5) can be re-written as

lim fndué/ fdp < lim / Jndp
so that
lim [ fn.dp= / Jdp
n—oJE E

3.3 Integral as a Measure

Can we define the integral differently? No. There is, in a certain sense, unique-
ness.

Theorem 95 Let p+ (X) be the set of all measurable non-negative functions
f: X — R Assume J: pt (X) x A — RT U {oo} such that

1. J(f,A) >0 for all f and A
2. A\ BeUwith ANB=2 = J(f,AUB)=J(f,A)+ J(f,B)
3. f(z) = c for some constant ¢ on A => J (f, A) = ¢J (id, A)

4o fo s f = lim T (fa, A) = T (£, A)

Then, J is unique and

J(f, 4) :/Afdv

Before we enter a proof of Theorem 95, we demonstrate the following.
These can indeed be proven using the fact that J (f, A) has an integral repre-
sentation but let us show that this follows from the 4 properties above.

Corollary 96 J (x4, X)=J (id, A)
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Proof. J (XA?X) =J (XA7 AU Ac) =J (XA?A) + J(XA7 Ac) by (2)
= 1J (id, A) + 0. (id, A°) by (3)
=J(id,A) m

Corollary 97 J(f,o) =0.

Proof. J(f,@)=J(f,0U@)=J(f,2)+J(f,2) by (2) so that J (f,2) =0
n

Corollary 98 Let f and g be measurable functions. Then, J (af + B8g,A) =
al (f,A)+ 57 (9,A)

Proof. Let us start with simple functions:

n n
o= ZCiXAi and ¢ = ZdiXAi
i=1

i=1

where A; is a partition of X. Then, by using induction on (2), we get

i=1 i=1
By (3), we get

n

J(6+@,A) = Y (ci+dy)J(id, AN Ay)

i=1

= Y e (id, AN Ap) + ) diJ (id, AN Ay)
i=1 i=1

= J(¢,A)+ J(p,A)

Now since f, g are measurable, 3 simple f,, g, such that f, / f and g, /" g¢.
Then, (4) gives us the required result. Similarly, we can show that J (af, A) =
aJ(f,A). m

And now, for a proof of Theorem 95.
Proof. Let v(A) = J(id,A). We show that v is a measure. v (&) = 0
follows immediately from Corollary 97. To show countable additivity, we show
continuity from below. Let A,, C A,+1 be an increasing sequence of measurable

sets and let -
U&:A
i=1

Then, x4, < xa4,., and x4, — X4 pointwise on X. By (4), lim J (XAH,X) =

n+1

J (x4, X). By Corollary 96, v (A) = J (id, A) = J (x4, X) = lim J (x,,,X) =
n— oo

lim J (id, A,,) = lim v (4,).

n—oo
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Now, let
f= ZCiXA,i
i=1
be a simple function. Then,
J(f,4) = J (f, Uan Ak> =>"J(f, AN Ay) by (2)
i=1 i=1

cid (id, AN Ag) by (3)

I

=1

n

= ciy(AﬂAk):/Afdl/

1

<

.
Il

Now, for an arbitrary measurable function, we can always come up with an

increasing sequence of simple functions which converge to our arbitrary function.
]

What follows in this section will be a general treatment of obtaining a mea-
sure from another.

Theorem 99 Let (X,2,0) be a measurable space. Fix a measurable function
f > 0. Define

or (4) = [ s
A
Then, ¢y is a measure on 2.

Proof. It is clear that ¢, (@) = 0. It is also easy to show that ¢ is finitely
additive and monotone, by definition. To prove that ¢ is countably additive,
we can show ¢ is continuous from below: that is, for any increasing sequence
Ay C Ay C ... of measurable sets,

lim ¢, (An) = o5 (A)

n—0o0

where -
A=A
i=1

Define g, (z) = f (z) x4, (). Then, g, is an increasing sequence and converges
to f.x 4, that is g, " f.x 4. By Monotone Convergence Theorem,

n—o0 n— oo

lim ¢, (A,) = lim gndu=/ fodu=/fdu=<pf (4)
X X A
|

Lemma 100 (Absolute continuity) (A4) =0= ¢;(4)=0
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Proof. If f is simple, we get that

N
pr(A) = apn(ANAy) < p(A) =0
k=1

If f is not simple, then take f, ' f with f,, simple. By the Monotone
Convergence Theorem,

lim nwz/fw

Since all the integrals on the left side are 0, we must have

/Afdu:0

Lemma 101 Assume that
/ fdu < oo
X

Then, f is finite almost everywhere. Moreover,

lim dp =0
u(E)*O/Ef s

/deuéc

for some constant c¢. Now, note that

Proof. We can let

A={z:f (@) =00t = VA= [ {f(2) 2 n}
n=1 n=1
so that p(A) < u(A,) and by Chebyshev’s Inequality,

ummsl/fWSE
nJx n

Since ¢ < 0o, we can pass to the limit to get u (A) = 0.
For the second part, we need to prove that Ve > 0, there is a § > 0 such that

,u(E)<5$/Efdu<e

In other words, p(F) < § = ¢; (E) <e.
If f is simple, then
N
[ fau=>aun (40
X k=1
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where we can assume that ay < oo, since otherwise we have equality trivially.

Then,
N

/Efdu Zakﬂ (ENAg) <p(E Z

k=1 k=1

Thus, given € > 0, we can set

If f is not simple, then 3 a sequence of simple functions {g, : n € N} such
that g, — f. Take a simple function g¢ < f from the sequence of simple

functions such that
[odn< [ gau< [ gauss
X X X 2

where g, because it is integrable, has finitely many values and they are all finite
so that g, is bounded (this is different from 1/z, say, which does not have finitely
many values). Thus, ¢. (z) < ¢, for any z € X and so,

/fdu / (f - ge)du+/Xgedu§/X(f—ge)dquceu(X)

Also,
€
/ (f —gc)dp < 3
X

and now take § = 5--. Then,

p(E) <

s — o1 (B)= [ fu

€

= /fxEdu</ gexEd;Hg
X X
< cn(B)+5=c

3.4 Integral of Continuous Functions

Let (X,2, 1) be a measure space and let f () be a u-measurable function and
let g () = f(z) if f(z) > 0 and = 0 otherwise. Then, g (z) is integrable. For
the negative part, let h(z) = —f (x). Then, h(z) is also integrable and we

define
/ flp = — / hdu
X X

for f(z) < 0. In general, provided that f is finite, we can decompose f (x)
as g(x) + h(xz). There is a cleaner, more standard way of doing this: we
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let f* = max(f,0) and f~ = max(—f,0). f* and f~ are p-measurable by
Corollary 49. Moreover, both functions are non-negative and f = f+ — f~.
Denote |f| = f*+ f~. If

/Ef+du,/Ef*du<oo

then we say that f is p-summable (i.e. finite). The standard terminology
is “integrable”, i.e. the integral is well-defined but we will prefer summable.

Thus, we can define
[ tin= [ rran- [ 1
E E E

Example 102 Let X = N = {1,2,...}, p(A4) = |A]| (counting measure), A C
X. Let g: N — R be a sequence g (n) = g, < co. Then,

/Egdu =

nek

for any F € 2.

To show this, note that we can write g as

9= ZCnX{n}
n=1

where ¢, = g(n) and gr = ckXxyyy- Note that

/ grdp = ci
N
Furthermore, gy is a sequence of measurable functions such that
o0
9= Zgn
n=1

Thus, by Problem 81,

/Ngdu=§:1/Ngkdu=§g(n)

Things are, however, not always this clean. The above representation rests on
the assumption that g (n) < oo for each n. If we do not have this guarantee, we
can run across oo — oo. Moreover, we have convergence issues to deal with, as
well. Therefore, it is not always true that

/X fdp # ifn
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What if f, = % ? The sequence converges and so does the series

(-1
Z< n)

n=1

n

On the other hand,

o
>
n=1

/X fdu

Problem 103 Let x € X and let (X, 2X76x) be a measure space where d, is
defined as

diverges. Same for f, , so

is not well-defined!

vor-{ 4158

If f is a nonnegative function such that

/fdég; < 00,

What can we say about f?

Solution 104 f is measurable since for any measurable subset of the codomain
of f, the pre-image is a subset of X and hence in the o-algebra — measurable.
We also know that f is summable because the integral is finite. By Lemma
101, f is finite almost everywhere. That is, the set

N{yeX:If(yl>n}

n=0
has 0,-measure zero. Hence
(oo}
v ({yeX:1f () >n}
n=0

That is, Vn, x & {y € X : |f (y)| > n}. In particular, |f (x)] < 0. Since x is
arbitrary, we can conclude that f is the zero function.

Lemma 105 Let f be a p-measurable function, defined on a measure space
(X, U, ). Then, [ is p-summable if and only if |f| is pu-summable. Moreover,

‘/deu]g/xuw
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This follows easily from the basic definition. This feature is super important
and is what makes Lebesgue integral different from Riemann integral, which is
discussed in the next section.

Proof. f is p-summable <=

both/f+du<ooand/f_du<oo
E E

| rraus [ ran= [ irdn <

and conversely. Furthermore,
frol
E

[Efdu‘ /Ef+du/Efdu‘ <
/Ef+du+/Ef‘du=/E|f\du

Problem 106 Show that the converse doesn’t hold

Then,

oo

Solution 107 Let (X, 2, 1) be a measure space with i (X) < oo and let A C X
such that A ¢ A. Define f = —1+ 2xy4. Then, |f (z)| =1 for all x so that the

|f| is summable. However, f is not measurable since A is not measurable.

Problem 108 Let f,, be a sequence of summable functions and f, — f for a
summable f. Show that

J A= ridn=0 = [ 1ndan— [ Iflau

Solution 109 Let f, = fF—f - and f = f*—f~, and fo—f =g =g} — g, .
Rearranging gives us gF + f7 + fT = fF + f~ + g, so that

/XgiduﬂL/)(f;duﬂL/Xf*du:/XfiduﬂL/Xf’du+/X9;du (7)

Now, the first condition is equivalent to
/\fn—f\du — 0<=>/Ign|du—>0<=>/gidu+/g;du—>0
X X X X

— /g,‘fdu—>0and/ g, di—0
X X
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so that applying limit to Eq (7) gives us
lim f;du+/f+du = hm/f;dw/f*du
<~ lim (/ fjdu—/ fndp>
— i [ pda= [ prane [ 5= [ g
n—oo X X X X
= fudu [ gdn = [ Al [ 171
X b'e X X

Now for some notation: if f is y-summable, then write f € £ (u). The 1 in
the superscript is immaterial for now but its importance will become relevant
when we cover LP spaces.

Theorem 110 Let f,g € L' (u) and t € R. Then, tf € L' (u), f+g € L' (n)

" /Etfdu:t/Efdu and [E(f+g)du:/Efdu+/Egdu

Proof. Assume that ¢t = 0. Then, [, tfdu = 0so that tf € L (u). If t # 0, we
know that tf is measurable by Corollary 49. We show that |¢f| is summable.

_ _ + - _ + -
[Eltf\du /Elt\lfldu /E(Itlf 1) di /Ew du+/E|t|f djt < o0

since the latter two are finite, because f* and f~ are both summable.

Next,let h = f+gsothat hT—h™ = fT—f~+gt—¢g~. Then, ht+f"+g~ =
fT 4+ gT 4+ h™ so we can use linearity since we are working with non-negative
functions. This gives us

/h*d,u%—/f*d,u—i—/g*du:/ f+du+/g+du+/ h™dp
E E E B E B

Rearranging this gives us
[wtau[wdw = [ pran- [ paps [ gtau- [ g
E E E E E E

/ Jdp+ / gdp

E E

We know that h is measurable but is it summable? As shown in Problem 106,
it does not follow that h ¢ L. Note that since the two terms on the RHS are
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finite, it follows that the term on the LHS is finite.

/hﬂiu—/h‘du’ < /h+du’+ /h_du’

E E E E

< |h+|du+/ |h*|dH:/h+du+/h*du
E E E E

== /h+du—/ h_du‘ §/ h+d,u—|—/ h™du
E E FE E

- /hdu‘ < [ faus [ gin
E E E

because ht = f* + gt and h~ = f~ + g~. Therefore, h = f + g € L (1) and
the Lebesgue Integral is linear. m
We are assuming that

/fidu<ooand/gidﬂ<oo
E E

so, by Lemma 101, the four functions f* and g* are finite almost everywhere.
Therefore, f + g is well defined and finite on X\N where p(N) = 0 and we
can extend f + g to be (honestly) finite by defining (f + ¢g) (n) = 0 for n € N.
The product of two summable functions is not summable, however. For a simple
example, take I = (0,1] and f () =g (z) = 1/v/z and pu = m;.

Theorem 111 Let f,g € L (1) with f < g. Then, for any E € 2,

[E fdu < /E gd.

Proof. Again, f* — f~ < g" — ¢~ sothat fT +¢g~ < f~ + ¢g*. We can then
use linearity of the integral. m

Theorem 112 (Lebesgue Dominated Convergence Theorem) Let f, €
LY (1), fn(x) = f () for every x and |f, (x)| < F(x) for every x and n for
some F € L (u). Then,

lim [ fadp= / fdp.

Proof. Case 1. f(z) =0 for all z € X and f,, > 0.

Then,
/ Jndp >0
E
so that
. EERRTR >0
e L

68



Let us consider F (z) — f,, () > 0. By Fatou’s lemma,

lim inf / (F—fn)duz/ lim inf (F — f,)du.
E E

The lower limit is not linear! It is monotone in one direction but not linear.

Recall that

lim inf (A+a,)=A+ lim inf a, and lim inf (—a,) = — lim supa,
n—oon>N n—oon>N n—oon>N N—00,> N

Thus,
lim inf / (F — fn)du 2/ <F— lim supfn> du
n—oon>N [p E n—oon>N

Since f,, — 0, we have
. _ _ o _ N
A o [ (7= ) i i jut ([ Fa [ oan) = [ P

== /qu— lim sup/fnduZ/qu
E n—>oonZN B 1o

= lim sup/ fndp <0
E

00> N

= lim frdp=0= / fdp
E E

n—oo
The rest of the cases are left as an exercise. m

Lemma 113 Let (X, 2, 1) be a measurable space with p(X) < co. Let f be a
summable function. Then, f is finite almost everywhere.

Proof. Consider f, = nxp, andlet E, = {z € X : f(z) > n}. Then, we have
a decreasing sequence of sets F, C E,_1. Now for all x in F, we have that
nXg, () =n < |f(x)]. From the monotonicity of the integral,

w(Bn) = [ e, du [ Afldn< [ =0 <o

Ey

for some C' € R. That is, u(E,) < C/n. Now set

E=(]E,

18

i.e., z belongs to E iff |f(z)| = co. Since u(F1) < oo (because p(X) < 00),
then by continuity of measure,

0<u(E) <p(By) <C/n = wE)=0
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Corollary 114 Let (X, U, ) be a measurable space with p(X) < oo and let

fn,f be functions which are finite almost everywhere for each n. Assume that
|fn| < C for each n and f,, — f. Then

tim [ fudn = /fw
X

n—oo

Proof. We can let C'(z) = C be a constant function. Then C € L' (u).
Moreover, note that, for each n,

‘/ fnd/“ﬁ/ |faldp < Cp(X) < oo
X X

hence f,, € £! (u). Hence by Lebesgue’s Dominated Convergence Theorem, the
result follows. m

Problem 115 Assume {f, : n € N} is a decreasing sequence of positive mea-
surable functions with f, (x) — f (x) for every x € X. If f1 is summable, show
that

i [ fudn = [
but this might not be true if f1 is not summable.

Solution 116 Since we have f1 > f, for all n, and in particular, f1 > f.
Moreover, [y fudp < [y frdu. By Fatou’s Lemma,

—oon> N—oon>N

00 > fldu> hm 1nf / fndu>/ (hm inf fn> du:/ fdu
b'e

Hence f is summable and positive almost everywhere. The result then follows by
Lebesgue’s Dominated Convergence.

Consider {fn =NnX(0,1/n-1) M E N}. Then, f1 is not summable, fr41 < fn

and f, — 0 pointwise but

lim fn,u—hm <n>:17é/fdu:0
n—oo n—oo \ 1 — 1 R

Problem 117 Suppose p is a positive measure on X, f is a non-negative mea-
surable function and

/fdu:c<oo
X
Show that
oo forae(0,1)
lim [ nlog(1+ (f/n)Y)du=< c ifa=1
nmee)x 0 if o> 1
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Solution 118 Let f, (z) = nlog (1 + (f (x) /n)*). Then, f, > 0. Consider the
case that 0 < a < 1. Then, (f (z) /n)* — 0. By L’Hospital’s Rule,

—af(@)7/no "
i FT@/m

_# n—oom 2 —i—f(ilj)a n—2-a

n—oo n—oo

i 10205 U @) /1))

Hence by Fatou’s lemma, lim [y frdp > [\ (imf,) dp = oo so thatlim [ fndp =
lime fndu = oo. Next, suppose that « = 1 and recall that x > 0 —

log (14 z) <x. Thus,
_ f f
fn*log 1+7 S*
n n

and so f, < f. Thus, each f, is summable and by the Lebesgue Dominated
Convergence Theorem,

lim [ fpdp= /fd,u =c

Finally, consider o > 1. Then,

—af(@)"/n>t!
lim Q@ /M) @ o, o (@) —0

e L e T () /n

n— oo

By Fatou’s Lemma, the result follows.

3.5 Convergence in Measure

Definition 119 Let £° (1) be the set of p-measurable functions which are finite
almost everywhere. If { fn : n € N}U{f} C L% (i), we say that f,, converges to f
in measure, written as f, = f, if Ve >0, p({z : |fn () — f(2)]| > €}) =0
asn — oo.

Problem 120 If{f, :n € N}U{f, g} C L (n), and f, = f and f, = g,
then f = g almost everywhere

Solution 121 Lete >0, Ey_y:={x: |f(z) —g(z)| > e}, By = {x: |f (z) — fo (z)] > §}
and By = {z : |g(z) — fu ()| > §}. Then, note that Ey_, C EfUE,. To show

this, let « ¢ Eg N Ef. Then, |fn(x) — f(z)] < €/2 and |f,, (z) — g (z)] < €/2

50 that |f (z) — g (@) = |f (@)~ fu (@) + fu (2) — g @) £ I (@) — fu ()] +

|fn(xz) —g(x)] < € so that « & Ey_4. Then, by monotonicity of p, it fol-

lows that pw(Er_g) < p(Ey) + p(Ey). Since pw(Ey), 1 (Ey) — 0, it follows that

p(Ef_g) — 0 so that g (xz) = f (z) almost everywhere.

Theorem 122 (Lebesgue) Let (X, 2, 1) be a measurable space with p(X) <
00, {fn:n € N}YU{f} C L°(u) such that f, — f almost everywhere. Then
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That is, on a set of finite measure, almost every convergence implies conver-
gence in measure.
Proof. We will prove the theorem for the case f, — f everywhere where f,, f
are finite everywhere. The result will then follow directly from this fact as
“everywhere = almost everywhere”.

Consider the error set & (€) = {z : |fx — f| > €}. Our goal is to show that
p(Ey (€)) — 0 where

E,(e) = |Jé& (e
k=n

Defining F,, (¢) this way gives us a decreasing sequence F; (¢) D Fs(€) D ...
Since we have convergence of f,,, we have u (E; (€)) < oo so that

w(E, (e))au<ﬂEn <e>).

n=1

by continuity of measure. We now claim that

is empty: if
x € ﬂ E, (e)
n=1

then for every n, IN > n such that |f,, (z) — f (z)| > €. Thus, f, does not con-
verge, a contradiction. Thus, u (&, (€)) — 0. Since 0 < p (&, (€)) < p(E, (€)),
it follows the f,, = f. =

Converse is not true!

Example 123 Consider X = [0,1], the Lebesgue Measure and sequence f, =
X[ 4 i8] where k = |logyn] and j = n — 2¥. This sequence is called the Type
2k’ 2
Writer sequence. The first five terms of the sequence are X[0,3]7 X[3.1]" X[0.1/4]-
’2 2> ’

X[1,4]" Asn increases, the intervals shrink further. Thus, for e > 0, the measure
4°2

of the set E,, = {x: |fn (z)| > €} approaches zero so that f, = 0, the zero
function, so we have convergence in measure. Moreover, each f, is finite, hence
is finite almost everywhere. However, for any x € [0,1], fn does not converge
to any function since the sequence is oscillating. Hence f, does not converge
anywhere.

The finiteness condition is necessary, as well. Consider f,, = X(y ;,+1) S0 that
fn — f = 0 almost everywhere. However, for ¢ = 1/n, and n > 1, my (E,,) =
my ({z:|fn ()] > 1/n}) =my (n,n+ 1) = 1 and this does not converge to zero.

An even stronger statement to Lebesgue is the following;:

Theorem 124 (Reisz) Every sequence that converges in measure contains a
subsequence which converges almost everywhere to the same limit.
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Theorem 125 Let (X, A, ) be a measurable space, {f, :n € NYU{f},{F} C
LY (p) such f, = f and |f,| < F. Then

lim [ fudp= / fdu

This is not Lebesgue’s Dominated Convergence Theorem since we have con-
vergence in measure, not the usual point-wise convergence. That is, for a
bounded sequence which converges in measure, the integrals coverge.

Proof. We first claim that that | f| < F almost everywhere

To see this, we note that |f,| < F for all n tells us that

Sup ‘fn| <F = lim sup |f’n| = |f| <F
n>N N—oop>N

Case I

Assume that p (X) < oo.

Since |f| < F, we can assert, by triangle inequality, that |f, — f| < 2F is
valid for all z. Now let &, (¢) = {z € X : |fn () — f (x)] > €}. Such a collection
is measurable. Then,

n dp = n — d n — d
/le £l du /gn(é)f /] u+/X\S(€)|f fldu

n

The first sum is sort of a global estimate (i.e. < 2F) whereas the second
sum is a local one (i.e. < €). Since X\&, (¢) = {x € X : |fn (z) — f (2)] < €},
we must have

/lfn—flduﬁ/ 2Fdp + ep (X).
X Enle)

For a fixed €, by Lemma 101, 1 (&, (€)) — 0 tells us that

/ |fn*f|d,L"S€/L(X)'
X

We do not know if the limits exist, yet we can apply limsup on both sides to
get.

lim sup/ o — fldp < ep(X).

Notice that in the equality, nothing depends on n on the right side and every-
thing on the left is true for every e. Thus, we can let € — 0 to get

limsup/ |fx (x ()| dp =0
7l—700k>n
Now,
< [ 1) - f @) du
= 0< lim inf/|fn — f(x)]du < hmsup/|fk ()| dp =0
n—ook>n nN—00L>n
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so that
tim [ |f (@)~ f (@)]dn =0

1@ = @l

[ @ = s <

we can apply limit on both sides to conclude that

Since

iim [ £, )dﬂ=/Xf(x)du

n—oo

Case II
Now assume that p (X) = co. It can be shown that Vg € £ (u) with g > 0,
JA € A such that 4 (A) < oo and fX\A gdp < e. We use this without proof.

Then, |f, — f| > 0 and |f,, — f| € £ (n). Use this and the continuity of
¢ () to prove the second case. The plan would be to use [y |fn — fldu =

Salfn —f|du—|—fX\A|fn — f|dp. Thus, fX\A'f" — fldu < fX\AQFd,u. Now
use g =2F. m

We cannot hammer uniform continuity in here because p (X\A) = oco.

The assumption of boundedness of the sequence is essential, even if the space
has finite measure.

Example 126 Consider X = (0,1), fn = nX(9,1/n)- We have convergence in
measure to the zero function. However,

[ =m0, 1/m) =1
X
for all n so that we do not have convergence of integrals.

Problem 127 Let (X, 2, 1) be a measurable space, with pn (X) < oo. Show that
the sequence {f, : n € N} converges in measure to f if and only if

lim |fn — 1

———du =0

Solution 128 Let e > 0 and E,, = {z : |fn () — f (z)| > €}. Since X = FE,, U
E¢, we have

o fl o lfuef o=l
/X1+|fn—f|d“‘/E1+|fn—f|d“+/Ec1+|fn—f|d“

By second part of Lemma 101, the first limz’t of the first integral on the right

is zero. For the second integral, we have ES = {x :|f, () — f (z)| < €}. Note
that 1|+f|7} ~7 < |fr. — f| < € so that
[fn — 1l / |fn — '
—————dp| < 7d,u< ed,u:ech < ep (X
[ e S M e ) < )
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Thus, in the limit, this integal is zero, as well.
Conversely, assume that the sequence does mot converge in measure. That
is, Je > 0 such that lim p(E,) # 0 where E,, = {z : |f () — fn (x)| > €}. That
n—oo

is, 30 > 0 such that VN, |p (Ey)| > § for somen < N. Since E,, C X, we have

|fn — f] [fn — f] e L€ €
/X1+|fn—f|dM2/En1+|fn—f|dM2/En T = et B 2 0

so that the sequence of integrals does mot converge, a contradiction.

3.6 Riemann Integral

Definition 129 The Riemann integral of a function f is defined as the number

b
/ f(z)dz = nh_)rréoz f(&en) (@rm — The1,n)

where a = 15 < Tap < oo < Ty =b and &y, € [Tr—1,n, Tk,n]

The first condition is that size of every partitions tends to zero and that the
limit does not depend on § ,,. A very important example is as follows

1 z€Q
f(x):{ 0 2¢Q

in which case the integral does depend on ¢, ,,.
If f is continuous, then the integral exists. The axioms of Lebesgue measure
can be given as follows: define

b
v &)= [ fla)ds

where A is a compact interval. Then, the following hold

1. U (Ay) +Ps(Ag) = ¥y (A) where Ay = [a,c] and Ay = [¢,b]. This is
where the trouble comes in (the end points of intervals should match).

2. U.(A) = c(b—a) where ¢ is a constant function taking value ¢ every-
where.

3. If f <g, then Uy (A) < VU, (A)

These three properties uniquely define the Riemann integral. To show the
integral exists (assuming that f is continuous) on closed intervals, by uniform
continuity, we can have a ¢ that does not depend on x. We can then split the
closed interval [a,b] by d to get f (&) —e < f (z) < f (§) + ¢, which leads to the
definition of the Riemann integral

Thus, instead of using the definition of Riemann integral, we could use the
three axioms. These three already hold for the Lebesgue integral, thus the
mantra “Riemann Integral = Lebesgue Integral” for a compact domain.
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Theorem 130 Let f € C([a,b]). Then, f € L' (m;) and

b
» fdmy :/a f(z)dx

Proof. f~!(a,00), by continuity, is open and every open set is measurable.
That is, f~! (a,00) € M;. Now, |f (x)| < M for every x € [a,b] and m; ([a,b]) =
b — a. Note that adding or subtracting ¢ from an interval (to make the two
intervals disjoint) doesn’t make much a difference since it is just erasing or
adding a set of measure 0. Thus, f € £! (m;). This essentially means

pr(a) = [ fim.

By uniqueness, p; (A) =V (A). =
The converse, of course fails. Recall the Dirichlet criterion for improper

integrals: if the Riemann integral of a function f is uniformly bounded over
all intervals, and g is a monotonically decreasing non-negative function, then
the Riemann integral of fg is a convergent improper integral. Therefore, the
Riemann integral is defined in

o -

/ sinz do.
1 x

if we take g (x) = 1/x and f (x) = sinxz. However, it has no chance of being
summable because
Ji

We will prove rigorously the above when we discuss functions of bounded vari-
ation, but for now, let us take that on faith.
There are ways to work around this limitation:

sinx

dm1 = OQ.

X

Theorem 131 Let f € C([a,b)) where b € RU{oo}. Then, f € L' (m;) <

b b
[ @l =t [1 @)l < o0

b
dz — d
| i@ /[ayb)f m
Proof. (=)

feLt(m)=|f] € L' (my1). If t < b, then f € C([a,t]). By the previous

result,
t
[is@ia = [ jsam,
a a,t

= / |f|dm1 */
[a,b) (t,b

)

In this case,

|f\dm1
)
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Our goal is to show that

lim |f dml =0.
t—b (t,b) |

If b € R, then it follows trivially since m; ((¢,b)) — 0. If b = oo, consider a
monotonically increasing, unbounded sequence {a,, : n € N} with a; = ¢. Then,

limt = lim a,
t—b n—oo

We can then consider the decreasing sequence of intervals (a,,b) D (ant1,b).
o0

Let By, = ﬂ (an,b). Then, Ey C Exy1 so that by Absolute Continuity of the

n=~k
Lebesgue measure,

lim ’ Lfldmi =@ (ﬂ (an,b)> = lim @5 (En) =0

n—oo
n=1

(t,

(<) If the Riemann integral exists, then we need to prove that the
Lebesgue integral exists, provided that

b b
[ 1 @de =t [ @) dr < oo

If t < b, by Theorem 130,

o1 (ar]) = /[ ldms = / f (@) da

Choose {t,, : n € N} such that t,, /" b. Then, [a,t1] C [a,t2] C ... . Since @iy 18
a measure, then, by continuity of measure,

b t
1@l =t 17 @de =ty [ 11w = i oy (o) <
u

Problem 132 Let f (x) = 2=/2 for x € (0,1] with f(0) = 1. Without refer-
ring to Riemann integration, prove that f is summable with respect to my

Solution 133 Let .
Y= ZCiXAi <f

i=1
be a simple function with A; being the partition of (0,1]. Then,

¢pdmy = Zciml (Al N (0, 1]) < 0
(0,1] i—1

and so

sup{/Ez/Jdﬂzz/Jsimple,nggfonE}:/Efd;L<oo
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3.7 Product Measures

The goal of this section is to define product of measures, and, therefore, multiple
integrals. That is, dA = dxdy = dmydm; = dmy where the product commutes.
This is necessary since not in all cases do we get an iterated integral. Proving
this is the main motivation, so we can ultimately compute

o0 2
/ e ¥ dx
— 00

Some notation: we will have two measure spaces (X, x, uy) and (Y, 2y, iy )
and define P = {AXx B: Ac®Ax and B € Ay }. This is at least a semiring
but, sadly, at most a semiring. The fact that P is a semiring follows from
Problem 26. To show that the product of two measures is not a measure, even
if the measure is complete, consider X = [0,1] = Y and let puy = puy = my.
Let A be a nonmeasurable susbet of [0,1]. Then, A x {0} ¢ P. Note that
A x {0} € [0,1] x {0} and the latter has measure zero. Now take E = [0, {]
and F = [%, 1]. Then, clearly FEUF € x = 2y . Moreover, Ex E,FF X F € P.
However, (E x EYU (F x F) & P.

Since we’ve seen that we can construct a measure using an ordinary set
function by Lebesgue-Carathéodory theorem, it would not be outlandish to
propose a set function py (A X B) = px (A) .uy (B), which is naturally well-
defined on P. Let us prove that it satisfies the hypothesis of the Lebesgue-
Carathéodory theorem.

Lemma 134 p is a pre-measure.

Proof. P1 ;1 (2) = px (A) .uy (@) or px (&) .py (B) for any AeAy or B €
2y, and both are zero.

P2 To show that p, is finitely additive, let {A4;:1<j<n} C Ax and
{By : 1 <k <m} C 2y be collections of disjoint sets and let

A= OAJ- and B = OBk

j=1 k=1
Then,
po (A X B) = pux (A) py (B) = (Zu (Ai)> <Zu(3k)> =D (A p(Br)
i=1 k=1 i=1k=1
On the other hand, since
n m (n,m)
Ax B= UA] X(UBk>: U (AZ‘XB]C)
j=1 k=1 (j.k)

we therefore have equality in both sides.
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P3 For countable monotonicity, let
E=AxBc|JA; xB;=|JE;
j=1 j=1

where E; = A; x B; € P. We need to show that, for E,

po (B) = px (A) py (B) < ZMX (Aj) Ky (Bj) = ZMO (Aj X Bj) = Zﬂo (EJ)

Define
« | B z€A
B = { o g A
Then,
E* c | JEY
j=1
where

z Bj .’L‘EAj
EJ‘{ o udA

It follows that, for z € X,
py (E7) < ZMY (ij) :
j=1

This is because x € A implies

and if ¢ & A,

J
Also, py (E®) = 0if, for each j, x4, (z) = 0, assuming that no Bj is null. It
follows that

iy (A) py (B) < Zﬂx (Aj) py (By) -

]
Now, by Lebesgue-Carathéodory theorem, we can extend p, to a measure
1= px @ iy, on some o-algebra on X x Y.

Example 135 Consider m,. on R" and mg; on R®. Then, m, @ my is a measure
on R™5,
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This is also the same as the canonical measure on R" "¢ since they are defined
on the same o-algebra and agree on each element of the o-algebra. A rigorous
proof of this fact will be skipped.

Definition 136 A measure p is called o-finite if X can be written as a count-
able union of measurable sets, each of finite measure.

Example 137 m; on R, where X; = [—2j,2j]

Example 138 The counting measure is not o-finite on R since any infinite set
has measure infinity yet may not cover R.

For the rest of this section, we assume that all measures are o-finite and
complete. Let (X,2x,puy) and (Y, 2y, 1y) be two such measure spaces. Let
(Z,42,1,) where Z = X XY be the completion of the product spaces.

Proposition 139 (Z,%z, 1) is o-finite.

Proof. Let - -
X = UA,- and Y = UBi
=1 =1

Then, A;, B € P =x x Ay and since jig = p|p, the result follows. m

Lemma 140 If(Z,Az,puy) is the complete measurable space obtained from pre-
measure (i, on P =Ux x Ay, then for any F € A, 3G with E C G such that

w(G\E) =0 and
G = JArn
n=1k=1

where Ay, € P.

Proof. That fact that we can always find a G with the given measure holds true
because of completeness. If F' is a bounded region, then we can have rectangles
Ay, that determine this region. If £ is unbounded, then the result is trivially
true. m

We now prove Fubini’s theorem for product of characteristics functions,
which is basically a variant of Cavalieri’s Principle (which we state without
proof):

Theorem 141 (Cavalieri’s Principle) Let (X,x,uy) and (Y, Uy, py) be
two o-finite measure spaces. Let (Z,Uz,pu,) where Z = X XY be the com-

pletion of the product spaces. Let C' be a measurable set in Az and C* =
{yeY:(x,y) € C}. Then

1. For almost every x, C* € 2,

2. The function x — py (C®) py-is measurable
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8. The integral over C' can be calculated by iterations:
0(€) = (m 9 m) (€)= [ iy (C)dux

The generalization of Cavalieri’s Principle to non-negative functions allows
functions to be integrated in the product space, even if they are not summable.
This allows us to show that p, the pre-measure obtained by the product of
measure, is countably additive.
Proof. We know that p, is countably subadditive by Lemma 134. Let
{A; x Bj : j € N} be a pairwise disjoint and let

E:AxB:DEj

n=1

where Ej = Aj x Bj. Then, for each (z,y) € X x Y, note that x4, p, (z,y) =
X4, (%) xp, (y). Thus,

¥)=> Xa, @) x5, ©)

n=1

Since we have X, (y) p1y-measurable, the integral

/ > Xa, (@) x5, (v) dpy
y J=1
is well-defined. Moreover, by Monotone Convergence Theorem,
[, @), @dny = Jim [, ), @) diy
e j=1 y J=1
so that by linearity of measure,

nllxr;o/zlej () xB, (y) duy —HILH;OZ/XA z) X, (y) dpy
y "=

nlY

= lim > Xa, (2) / Xz, W) diy = Xa, (z) / X, (y) duy
n=1 v n=1

Y
Note that
/ xs, ) diy = py (B;)
Y

so that we have

ZXAj () py (Bj)
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Now, x4, (x) is pyx-measurable so that

/ZXAj () py (Bj) dpx
X n=1

Applying the same steps as above gives us

ZMY (B)) /XAj (z)dpx = ZMY (Bj) ux (45) = Zﬂx (Aj) py (By)

P4 =1
Now,
/ ( / X (#,y) dpy | dux = py (EY) / X () dpx
X \v X
= py (BY) px (E%) = px (E%) py (BY) = px (A) py (B) = o (E)
where
- {2 154
and
oo{3 13
Thus, _ _
po (E) = Zlux (Aj) py (Bj) = Zluo (Ej)
]

Let (X,2x,pyx) and (Y,%Ay, uy) be measurable spaces, (Z,%z, ;) be a
completion of the product space Z = X x Y and let f : Z — [0,00] be
a non-negative function (not necessarily p,-measurable) Define f, such that

T ELR f (z,y) with the integral

Sy fydpy  if it exists
Iy) = { 0 otherwise

Then, I (y) exists for almost every y. Assuming that f is u -measurable, then

/Yf(y)dﬂy:/zfdv

Theorem 142 (Tonelli) Let (X,Ax, py) and (Y, Ay, iy ) be two o-finite mea-
sure spaces. Let (Z,Az,1,) where Z = X XY be the completion of the product
spaces and let f: Z — [0,00] be p,-measurable, then
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1. For almost every y € Y, the following integral exists

/X fydix

2. Moreover, we have the iterated integral

/Y</Xfydux) dMY:/Zde

We can equivalently have f, such that y ELN f (z,y), giving us

L ([ on@ane)dn = [ ([ £ 0dur) dux.

Theorem 143 (Fubini) Let (X,Ax, py) and (Y, 2y, 1y) be two o-finite mea-
sure spaces. Let (Z,Az,1,) where Z = X XY be the completion of the product
spaces. Let f : Z — R be p,-summable. Then,

1. almost every y € Y, the following integral exists

/X fydix

2. Moreover, we have the iterated integral

A(/Xfydux) duyz/zfdy

Corollary 144 If g (x) is summable on X and h(y) is summable on Y, then
f(z,y) =g (z)h(y) is summable on Z. Moreover,

o= ([ ()

However, we may still not have measurability! To get that, set ¢1 (x,y) =
g(x) and hy (xz,y) = h(y). In this case, g1 and h; are measurable, then their
product is measurable.

Problem 145 Let (X,Ux, px) and (Y, Uy, uy ) be o-finite and complete mea-
sure spaces, g be summable on X and h be summable on'Y . Show that f (x,y) =
g (x) h(y) is summable on X x Y and that

o= ([ ) ()
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Solution 146 Note that X is Ax-measurable and Y is Ay -measurable implies
X XY is measurable on the o-algebra gemerated by Ax X Ay, say ™Az. Let
g1 (z,y) = g (z) and hy (z,y) = h(y). By Cavalieri’s Principle, g1 and hy are
Az -measurable. Since the product of measurable functions is measurable, f (x,y)
is Az-measurable. We will show that |f| is summable. By Toneli’s Theorem,

/Z f ()| dv = /X /Y 91 (@,9) b ()] dpy dpiy

Now, g1 (z,) = g (x) and hy (z,y) = h (y) so that

[ [ ls@nlduydng = [ [ 1o1h )iy dug
/X|g($)/Y|h(y)|d/iydﬂxz/x|g(m)|</;/h(y)|duy> diix
(/X |g(x>|dux> (/Yh(y)|d,uy>

Now, since g and h are summable, then so is |g| and |h|. Thus, the multiplicands
in the last line are two finite numbers and, therefore, the product is finite. Thus,
|f| is summable so that f is summable. Thus, by Fubini’s theorem,

e (o) ([ )

Problem 147 Let (X,Ax,puy) and (Y, Uy, uy) be measure spaces with X =
Y =N with ux and py counting measures. Define

2—-277 T=1y
fly)=¢ —2+427° z=y+1
0 otherwise

Show that f is measurable with respect to px ® py. Does it contradict the
Fubini’s Theorem?

Solution 148 We have that Az = 2V x 2V since Ax = Ay = 2V so that every
subset of N x N is measurable. Thus, the preimage of any measurable subset of
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R under f will naturally be measurable. Now,

//f(m,y)duxduy:/ (/f(x,y)dux> dpy

/Eykymw—/Zﬁ;dw

k=1 k=1j=1
(f (B, 1)+ f(k,2)+...)

k=1
fAD+ f2,0)+ fB3, 1)+ .t
F,2)+ f(2,2)+ f(3,2)+ ..+
FL3)  f(2,3)  £(3,3)+ ..+
f,4)  f(2,4) B4+ A+

= f(l,l)'+f(2,1)+f(2,2)+f(3,2)+

2-2"Y+ (242 +(2-2"3) + (-24+27°) +...

— 3/2—T/4+T7/4—15/8+15/8+...=3/2

On the other hand,

Thus,

This is because f is not summable:

k=1j—1

k=1
f(l,l)-i— f(172)+ f(1,3)+ +
feHD+ f22)+ f(23)+ .+
- [ f(2,3) fB3)+ A+
[ f(2,4) fB3)+ A+

o0 o0

= Y —2Fqoh =N okl (240

k=1 k=1
> T 1

_ 22 k 1:_522 k:_i
k=1 k=1

//fwyWMw#//fxyWMm
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ft(z,y) = 2—27% forx = y. Thus,
fr(z,y) = g(n) = 2—27". On the other hand, f~ (z,y) = —2+ 27% for



v =y+1. Thatis, f~ (x,y) = h(n) = —2+27""1. Note that

oo

/Ng(n)du:ZZ—2_":oo

n=1

whereas -
/h(n)d,u: Z 242" = 0
N n=1

Thus, Fubini’s theorem is not contradicted, since the hypothesis of Fubini’s the-
orem are not satisfied.

Problem 149 Let X =Y = [0,1], with ux being the Lebesge measure and piy
being the counting measure, Ax and Ay both the Lebesgue o-algebras. Show
that D = {(z,y):x =y} C X xY = Z is a measurable set with respect to
v=px ® iy. Show that

/ZXDdV7é/X</YXD (xvy)duy> dpx

Does it contradict the Fubini Theorem and why not?

Solution 150 Let n € N and consider the square [0,1] x [0,1]. Add k — 1
equidistant points (with 0 < k < n — 1) on the diagonal. Using these, form k
rectangles with heights +,2,..... 1 and widths % Mathematically, form the sets

n’n’

[k, E21] o [k BEL) [ep

n—1
k k+1 k k+1
D, = U z

k=0

Then,D,, € Az for each n. Moreover, by construction

D:ﬂDn

neN
so that D € Ay. Next, it suffices to show that

/}((/}/m(mw)ﬂw) dux#/y(/XxD(x,y)duX) dpiy

since Fubini’s theorem implies

/y (/x XD(x’y)d“X> dpy = /Zdeu

and, therefore, the above are equal. We are essentially looking at the contrapos-
itive of this statement. We evaluate each side of the above.

/X (/Y XD(x,y)duy) diy = /XMY {yeY |y=a)) dux
= /XHY {y}) dux = /X ldpy = 1py ([0,1)=1.(1-0) =1
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whereas

/Y </X XD(:v,y)duX> dpty

— [ nx (o e X o=y} duy
Y

[ nx Gahyd = [ odiy =0

Again, this does not contradict Fubini’s theorem because the space ([0,1], Ay, iy )
is not o-finite: assume that we can split the uncountable set [0,1] into a count-
able number of countable sets. Let

1= A
n=1

where the collection {A,}.~ | is pairwise disjoint and each A, is countable.
Since the countable union of countable sets is countable, we have that |[0,1]| =
IN|. That is, Rg = ¢, a contradiction.

Problem 151 Let f,g be two increasing functions on [0, 1], measurable with
respect to my. Prove that

fgdm; > ( fdm1> ( fdm1>
[0,1] [0,1] [0,1]

Solution 152 If f and g are not summable, then f[o,l] fdm; = f[O,l] gdmy =
fo ] fgdmy = 0o and so the inequality holds. If either one of these, say f, is
not summable, then f[O,l] fdm; = co = f[O,l] fgdmi = oo so that again the

inequality holds. Assume that both are summable. Let Z = [0,1] x [0,1] and
(z,y) € 0,1] x [0,1]. Note that

/ (f (@) = f(¥) (9 (x) — g (y)) dma
- /[0 . / f W) (g (x) —g(y)) dmy (z) dmy (y)

[0,1]

1] /[0 1] I —fWa@) —f(x)g(y)+ f(y)g(y)dm (x)dm (y)

O
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[ (fo f

3\

[ (fo f

3\

- (Jow

_—

1]

—_—

A

N N N N
=
g%

Now, if © <y, we have f
(

(f (@)= f(y) (g (z) -
0. If x >y, thenf(
W)

case, (f (x) -

(f (=) = f(y) (g (x) -

x) dmy ( x)) ( 01]

imy ) - (10

L )(f[m] <>dm1<x>)

f(z)g(x)dmy (z )

_ (f[m] <> <>dm1<x>) (f[m

f[01

(rwg
(@) fiom 9

()(fm] (z) dmy (2)) +(f (4) g

/ ( / f (@) g (x) dmy (x)) dm, (y) —
[0,1] [0,1]

9(y) ( f (z) dm,y (x)) dmy (y) +
[0,1]

( f () g () dmy ($)> dmy (y) —
[0,1] [0,1]

/ g(y)< f (x) dmy (m)) dmy (y) +
[0,1] [0,1]

(
y
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)20 = /Z(f( ) -

]
A

1]

1]

/ f (@) g () dmy <x>> (1—0) — ( £ () dms <y>> ( / g () dmy <z>> -

[0,1] [0,1] [0,1]

(y)dml(y)>< f (@) dm (2 >>+/ (f () 9 (4)) dmy (3)
[0,1] [0,1]

T z)dmy () | — x)dmy ( ) dmy ( —
J}f()g()m()) ({01 m )(/Ol]g m )
/ g<w>dm1<m>>( f()dml()>+/
[0,1] [0,1] [0,1]

(f(
2 ( f(x) g (z) dmy (w)> -2 ( ) dmy (z >
[0,1] [0,1]

x) — [ (y) <0 and similarly g (z) —

) dmy (x))—
dm,
() dm (a:)) | my (y)
) dm, (x))f
dm,
f[01 dmy (x)) )
) dmy (z ))f
dm,
wa-oy ™Y
(f () /H g () dmy <x>> dm () —
(f (y) g (y)) dmy (y)
z)d 1 \X d 1 —
(f@)/mlg( ) dm ( >> s (9)
(f (y) g (y)) dmy (y)

9 () 2 0. Ifx =y, then (f () —
x) — f(y) >0 and similarly g (z) —
(9(z) —g(y)) = 0. Thus,

x) g (x)) dmy (z)

([ rm )

g(y) <0. Thus,

FW)(g(x)—g(y)) =
g(y) > 0. Thus, in any
(9(2) —g(y))dmz >0



That is,

2( f(w)g(w)dml(w)>2< <x>dm1<x>> ( / g(w)dml(w)>20
[0,1] [0,1] [0,1]

In other words,
fgdmy > fdmy / gdmy
[0,1] [0,1] [0,1]

4 Classification of Functions

4.1 Differentiability

Our ultimate goal for differentiability is to come up with nice properties of a
function f such that the fundamental theorem of calculus holds. That is,

F(:c):/mf(t)dt:>f:F’

for a nice enough f. Moreover, if f is summable, then we would want F' to be
continuous. The natural question we should be asking is under what conditions
is I differentiable? This would help answering when F’ = f.

Problem 153 If
F(.’E) :/ fdml,
(—o0,z)

18 it true that F is continuous?

Problem 154 Let x, — x. We need to show that F (z,,) — F (x). Note that

/ Jdmy :/X(—oo,a:n]fdml
(—o0,n) R

Thus, we can let X(_oo z.1f = [fn- Note that f, is summable because [ is,
fn — [ pointwise and |f,| < f. Thus, by Lebesgue’s Dominated Convergence,

lim F' (z,) = lim /X(—oox 1 fdmy :/ fdmy = F (z)
n—o0 n—oo Jp o oo
Before we get into this business, we prove the following useful lemma.

Definition 155 Let E be a measurable subset of R. Let F be a family of closed,
non-degenerate covers such that Ve > 0 and Yz € E, there exists I € F such
that my (I) < e and x € I. F is said to be a Vitali cover of E.

89



Theorem 156 (Vitali’s Lemma) Let E be a measurable set such that m} (E) <
oo and let F be a Vitali Cover of E. Then, we can find disjoint intervals

Ii,.... I, € F such that
m} (E\Ulk) <e
k=1

The proof is very geometric in nature.
Proof. We can find an open G with E C G such that my (G) < co. We can
always make I’s from F smaller to put them all inside G. That is, I C G. This
does not spoil our condition. This is particularly true since G is open.

If there exists a disjoint subfamily {I; : 1 <k < n} C F such that

n
Ec | JI
k=1
In this case, we trivially have

m} (E\ 0@) = 0.

If there is no such family, then proceed by induction: take any I; € F. We need
to choose the second one. From another subfamily 73 = {l € F: INI; = @}.
This is non-empty by assumption in this case. Now, for every I € F in general
and in particular, in Fj, since I C G, we must have my (I) < m; (G). Since
m; (G) < oo, we must have s; = sup{m; (I): I € F1} < oco. Take any I, € F;
with my (I) > s1/2. On the n-th step, we have Iy, ..., I,, chosen. By procedure,
these are pairwise disjoint. Let F, ={l € F:IN =@,..,I NI, = &} This
is again possible for the same reason as above with s,, = sup{m; (I) : I € F,} <
oo so that we can choose my (I,11) > s,/2. The crucial step here relies on the

fact that
n oo
E\{JI.c |J 5L
k=1 k=n+1

where 51, is the interval with the same midpoint as I, but 5 times wider and this
makes easy applications in higher dimensions. To prove this, we need to prove
that 1) my (I,,) — 0. This is because the pairwise disjoint family {I,, : n € N}
is covered by G. That is,

UIk cG
k=1
so that

Zml (In) <mq (G) < 00.

We also need to prove that

k=1
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so that 31 € F,, such that x € I. However, Iy such that I NIy # 2.
The overall strategy is to take this x and show that it is covered 5 times an
interval. Assume that this is false. Then, VN, I N Iy = &, which means that
I € Fy for all N but this means that sy > m; (I) = my (Iny) > my (1) /2,
a contradiction since I is fixed and my (I) 4 0. 3) N > n. This holds because
I € F,, and so it is disjoint with Iy, ..., I,,. Take the first N for which IyNI # @.
In particular, IN = @, ..., ININy_1 = . So, I € F, so that, the crucial thing,
my (In) > my (I) /2, which justifies the 5 scale. If x € I, then distance from x
to the middle of I is < my (I) + my (In) /2 which is less than 5/2m; (In) so
that = € 51y.
Now, choose n such that

oo

Z mq (Ij) < 6/5

Jj=n-+1

We can do this since the tail goes to zero. Now, the outer measure is monotonic
hence

m} (E\Ulk> <mj| |55 < ) smiGs) <e
k=1 j=n+1 j=n+1

]
The fact that Vitali’s Lemma needs closed, nondegenerate intervals is crucial.

Example 157 Let E be any finite interval and € > 0. For each x € E, define
I, = [z,z]. Clearly,
Ec |JL

z€E

Moreover, mi (I;) = 0 for each x. In particular, for any € > 0 and for any
x € E, we have 0 = m} (I;) < € and x € I, by construction. Then, for any n,

my (E\ O%) =mj (E)

k=1
so that for e < mj (E), the conclusion of Vitali’s lemma fails.

In fact, the Vitali lemma does not even extend to the case in which the
covering collection consists of non-degenerate general (not necessarily closed)
intervals.

Example 158 Consider the set E = (0,j) for some fized j € N. Then,
mj (E) = j < co. For each x € E, define intervals B (x,r;) centered at x
of radius
min (j, j — )
Ty =
2
Now, consider the collection F = {B (x,r;) : x € E}. Then, by construction,

EC U B (z,ry)
zeE
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so that F is an open cover of E. Moreover, for each x € E, by construction,
we can find an open ball B (x,r;) such that © € B (z,r;). Since B(x,r,) is
an interval, any © € B (x,7;) is a limit point so that for any ¢ > 0; we can
thus find a neighborhood I of x such that I C B (z,r;) and mj (I) < e. Thus,
the collection of the open balls B (x,r;) for x € E (and such associated neigh-
borhoods I) form a Vitali cover of E. The paranthetical remark is unnecessary
as B(z,r,) UI = B(z,7r;). Now, for any finite number n < j, and disjoint

intervals Iy, ..., I, € F with m} (I;) = 4 min (i,i — z), we observe that

0< Zm”{ (Ix) = Zmin(k,k—x) <kn
k=1

k=1

By construction, j — kn < j so that for € < j — kn, the conclusion of Vitali’s
lemma fails to hold.

Before we embark on the main topic of this section, the following problem
is a useful reminder of why Lebesgue Measure’s is better suited than the Borel
measure.

Problem 159 Show that any union of any collection of closed, bounded, non-
degenerate intervals is measurable.

Solution 160 The finite and countable case is easy, since we can just ap-
peal to the properties of the o-algebra M. For the uncountable case, we use
Vitali’s lemma. Let F be a family of closed, bounded nondegenerate inter-
vals Jo, with o as the index for some uncountable indexing set J. Let & =
{Z, : 3B € J, I, C Ig}. Essentially, we are picking the “small” intervals from
F. Note that it is still true that

F=|Js=Js
JeF Je&

Moreover, by construction, £ is a Vitali Cover of F so that by Vitali’s lemma,
we can find disjoint intervals Iy, ...I € € such that

m’{ (F\01k> < €.
k=1

In fact, by Regularity of Measure, we can pass to the limit to extend to the
countable case to get {I; : i € N} C & such that

oo

mi (F) =) mj (Iy)

k=1
Thus, F' is measurable.
Theorem 161 If f : (a,b) — R is monotone, where the endpoints are allowed

to be infinite, then f is continuous almost everywhere
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Proof. WLOG, we can assume that f is increasing, a,b are finite and we can
consider the interval [a, b] instead of (a,b). We can write

(oo}

(a,0) = {a+li,blj

k=1

For a fixed zg € (a,b), define
f(zg) =sup{f(z):z <} and f (zf) =inf {f (z): 2> z0}.

Then, f (zg) — f(zy) > 0 because f is increasing. f is continuous at zg if
and only if f (msr) = f (956)~ In other words, f is not continuous at g if
and only if f (z3) < f(2). Let J(zo) = {y: f(zg) <y < f(zd)}. This
open set consists of points at which the function jumps, hence the choice of
letter. It is obvious that J(z¢) C [f (a), f (b)]. Moreover, if xy # z(, then
J (zg) N J (x) = @ and so

[f@.folc J J(=o)

zo€la,b]

is an open cover, for which we can find finitely many subcovers. Therefore, for
each n, the cardinality of the set {zo : my (J (zg)) > L} is finite, which implies
that there are only finitely many discontinuities. m

Let f:[a,b] — R and x € (a,b). We can define upper derivative

Df () = lim sup /@D =@
DI =l e =

and lower derivative as

o e f@tt) — f(2)
DI (@)= Jim ot
Clearly, Df (z) > Df (z). Also, f'(z) < 00 <= Df(x) = Df (z) < oo.

Problem 162 Find Df (0) and Df (0) where f (x) is defined as

[ xzsin(1/z) x=#0
f(‘”)_{ 0 z=0

Solution 163 Note that

DI = hm[ o w]:hml . tsint]

h=0 | o<|t|<h 3 h=0 |o<jtj<n T

1
= lim | sup sin—-| =1
h=0 lo<itj<n ¢



This is because sin% attains a supremum of 1 at, say, t = %h, which satisfies
[t| < h.

0 tsin 1
Df(0) = lim [ inf f( )] = lim [ inf bmt}
h—0 0<|t\<h h—0 |0<|t|<h T
= lim[ inf sm] -1
h—0 |0<|t|<h

Again, this is because sin * attains an infimum of —1 at, say, t = %h, which

¢
satisfies |t| < h.

Recall that if a continuous function f is increasing, then Df > 0. This
converse holds true for the upper derivative, as well.
Proof. Let f be a continuous function on [a,b] with Df > 0 on (a,b). Let
[e,d] C [a,b] with a# ¢S d#bande> 0. Let

B freioa 1000 L)

We need to show that sup £ = d for every € so that we can let it go to zero and
get the desired result. F is well defined since

fle)+ec> f(c)+ec

so that ¢ € E. Since f is continuous and [¢,d] is compact, f([c,d]) is also
compact and closed. Therefore F is closed and so, sup E € E. Let sup ' = a.
If a > d, then o € E, a contradiction. If a < d, let

)= sup 100 S10)
0<t<h

where h € (0,d — a]. Then,
lim g (h) = Df (a)

h—0t
By hypothesis, Df (a) > 0 so that

lim g (h) >0
Jim g (h) 2

By definition of this limit, Ve’ > 0, 36 : we have that g(h) > —€¢ whenever
h = |h| <¢. For ¢ =¢, since h € (0,d — o, Jo; with @ < a3 < d such that

flaa) — f(a)

o] —

> —€
That is,
flag) +eas > fla)+ea > f(c) + ec

so that a; € F and oy > sup E, a contradiction.
Thus, o = d. In summary, for any [¢,d] C [a, b] with ¢ S d and for any ¢ > 0,

f(d) > f(c) + €(d — ¢). Thus, we can let € — 0 to get f(d) > f(c). =
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Problem 164 Show that if the upper and lower derivatives of f are bounded
on (a,b), then there exists a constant C > 0 such that for every xz,y € |a,b),

|f(x) = f W) < Clz—y

Solution 165 We are given the existence of two constants C1 and Cy such that

fla+t)—f(2)]

|Df (z)| = |lim | sup ——————||=C; <00
h—0 _O<\t|§h t
and _ ; ;
|IDf (2)| = |lim | inf fla+t) - f(z) ’:Cg<oo
h—0 [0<[t|<h t

Let C = 2max {Cy,Cs}. Then, |Df (z)| < C/2 and |Df (z)| < C/2 so that
Df (2) + Df (@)| < |Df ()] +|Df ()] < C
Let z,y € (a,b) with < y. Then, 3t > 0 such that y — 2 = ¢. Then,
f) —fx) _ fle+t)— f(2)

t t
so that
e LEFD=I0) (|fest -t |y, Lot) =10
0<[t|[<h t t 0<|t|<h t
and so
pr @) < | ML) < Dy @) < Dy @)+ Ipr @) < €
That is,
‘f(y)—f(l") <C
y—x -

Lemma 166 Let f be an increasing function on [a,b]. Then,

mi ({z € (a,b) : Df (2) > a}) < - (f () - / (a))

(67

and
m} ({z € (a,b) : Df (z) =o0}) =0

Proof. If f were continuous on [¢, d] C [a, b] and differentiable on (¢, d), then by
the Mean Value Theorem, we have a point zg € (¢, d) such that f (d) — f (¢) =
I (x0) (d—c). If f/ () > a on (¢,d), then f(d) — f (¢) > a(d — ¢) so the result
holds if f is differentiable in (c,d).

In the general case, define E, = {z € (a,b) : Df (z) > a} andlet o € (0, ).
Now, define the family F = {I =[c,d] C (a,b0) : f(d) — f(c) > a'(d—¢)}. Is
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this non-empty? Yes. It actually covers E, as in the Vitali’s Lemma. Indeed,
take © € E,. Then, Df () > « so that Ve > 0, 30 : Vh < §, 3t € [—h, h], giving

w f@+t)— ()
t

> o — €.

Take ¢ = a — o’. Then, Vh < §, 3t € [—h,h] : f(z+1t) — f(z) > t,
giving us I = [z, +t] or I = [r+t,z]. We then have a disjoint collection
{Ik = [ck.,dk] 1 <k< n} C F with

mi | BEA\J | <e
j=1
Note that

mi (EBa) < mi|EonJL | +mi [ B\
j=1

A
2
=
N
_|_
[

A
g
=
|
gQ
+
[0}

< Z) (F(dj) = Fleh)) +e

< () @) +e

Since this is true for any o', we can let &’ — a (¢ — 0) to get what we need.
Using this, we complete the proof as follows:

mj ({me (a,b) :ﬁf(z)zoo}) <mj ({xe (a,b) : Df (x) >oz}) < é(f(b)—f(a))

and let @ > c0. m
And now, for a main theorem

Theorem 167 (Lebesgue’s Theorem) Let f : (a,b) — R be an increasing
function. Then, f'(x) exists for almost every x € (a,b)

Proof. Theset {z : f/ (z) does not exist} = {z: Df (z) = cc}U{z : Df (z) > Df (z)}
The measure of the first set is determined by Lemma 166. For the second
one, note that

{z:Df(z) > Df (x)} = U {z:Df(x)>a>p>Df(x)} = U E, 3 (say)

a,B€Q a,BeQ
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Our goal is to show that m} (E,,g) = 0. Take an open G such that, for, E, 3 C
G, we have m}] (G) < m} (E, g) + €. This does not follow from the regularity of
the measure! In fact, the outer measure is not even additive.

Note that
m} (Ea) =inf Y my ((a;,b;)).

Now, let 7 = {I =[c,d] CG: f(d) — f(c) > B(d—c)}. F covers E, g, as in
Vitali’s Lemma. To show this, let x € E and € > 0. Then, Df (x) > Df (z).
That is,

lim sup —f 2+~ f(=) > lim inf —f @+~ f(2)
h—0% |¢|<h t h—0+|t|<h t

By definition of limit and choice of €, we can find § > 0 : Vh < §,3t € [—h, h]

such that
fl@+t)— f(z)
t
Pick € such that Df (z) — € is a rational number p. Then,

>Df(z)—¢

fle+t) = f(z)>tp

We, therefore, have found our [c,d] = [z,z+t] or I = [z +t,z]. Moreover,
by choice of €, m;y ([¢,d]) = t < e. Thus, we can take the disjoint collection
{I; : 1 <k <n} C F so that

n
mi | Eap\|JIj | <e
j=1

where I, = [cg, di], giving us

NE

my (Eap) < my (EapNIj)+e

1

<.
Il

NE

my ({z € (¢j,dj) : Df (z) > a}) +e

n

<.
Il

IN

(f(dj) — f(¢cj)) + € (by Lemma 166)

QIr
.
I
iR

I
M-

(f(dj) = f(cj)) > am] (Eqp) — ac

<.
Il

On the other hand,

n

D (F(dg) = f(eg) < BY (dj = ¢5) = B3 _mi (L) < Bma (G) < B (Boy)+5e

Jj=1
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giving us amj (E, ) — ae < fm} (E, g) + Be. That is,

a+f
a—f

mj (Eaﬁ) <e

Letting € — 0, we get the desired result. m

Corollary 168 Let f:[0,b] — R be an increasing function. Then,

/fmuéf@—fW)

[a;b]

Proof. Set f(x) = f(b) for z > b. Then, f’ exists on E C [a,b+ 1] and
my ([a,b+ 1] \E) = 0 so that f' () = Df (z) > 0 for = € E. For this proof and
onwards, we introduce the following notation: let

Dufe) = LEHN I @

For a fixed h < 1, Dy, f is measurable on [a,b]. If x € E, we have Dy, f (z) —
1’ (x) (we can only take the limit when we have a countable set, as in a sequence).

Thus, f’ is measurable on E. Since m; is complete, by Problem 46, [’ is
measurable on [a, b]. Therefore,

f’dm1
[a,b]

is legal. Now, by Fatou’s Lemma,

lim [ D, fdmy > / lim D, , fdm, = / fdm,.

n—00 n—oo

[a,b] [a,b] [a,b]

For h = 1/n, we therefore have

Zb Dy fdm, = /

] [a,b]

dm1 .

fx+h) - f(2)
h

[

We can now use linearity of the measure, which applies only when f is summable,
to give

dmy = 1/h /f(x+h)dm1— /f(x)dnu )
la,b] [a,b]

/f(w+h)—f(x)
h
[a.b]

First note that

[owrnam@= [ g@dm@

[a,b] la+h,b+h]
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for any measurable g : X — R and [a,b] C X. To see this, let t = x4+ h. Then,
r=a = t=a+h and, similarly, z = b = t = b+ h. Replacing the
dummy variable ¢ with x gives us the required result and, therefore, modifies
our integral in Eq (8) to

1/h / f(x)dmy — /f(:c)dml

la+h,b+h] la,b
la+h,b] [b,b+h] [a,b]

e / £ (z) dmy + / £ (z) dmy + / F (@) dmy — / f(x)dml—/f(a;)dml
la+h,b] [b,b+h] la,a+h] la,a+h] [a,b]

= 1/h / f(z)dmy 4+ / f(x)dmy /f )dmy + / f(x)dmy — / f(z)dmy

[a,a+h] [a+h,b] [a,b] [b,b+h] la,a+h]

= 1/h / f dm1 / f dm1

[b,b+h] [a,a+h]

because [a,b+ h] = [a,a + h] U [a + h,b] U [b,b+ h]. Now, we can use f(z) =
1 (b) to give

h(bf) = [ fdm | <5 0F0)~hf @)= ) F(@).

[a,a+h]
Thus,
[ Ditam <1 6)- 5 (@
[a,b]
so that
lim [ Dy fdmy < £(5) — £ (a).
T
]

This inequality is very sharp!

Example 169 Consider



This function is continuous and finite but not monotone. Moreover,
/f’dm1 =
[0,1]

Thus, [’ is not summable so that monotonicity is crucial, even when the function
above is differentiable at x # 0.

4.2 Functions of Bounded Variation

Let f : [a,b] — R be a function and P = {z; : 0 < j < n} be a partition of the
interval [a, b]. Define

= Z |f (z5) = f(2j-1)]

Without the absolute value, this is just a telescopic sum. With it, the bounded
variation gives a sense of how oscillating the function is. Some partitions do
that and some don’t. To find out how bad these oscillations can get, we take
the supremum over partitions. This is called the total variation TV (f):

TV (f) = sng(f, P),

which may be denoted by TV ( f[a,b]) since the total variation is defined on
a particular domain for a function f. If TV (f) < oo, then f is of bounded
variation.

Problem 170 TV (f) =TV (—f)

Solution 171 Let P be a partition of the largest closed subset of domain of f.
Then,

(=f, P :Z| 13]1|—Z|_ (z; +f$31|—2|f$3

Since supremum is taken over all partitions, the result follows.

Example 172 Let f be a monotonic increasing function. Then, TV (f[a’b]) =
f(b) — f(a). This is because f(x;) — f(xj—1) > 0 for x;_1 < z; so that
If () — f(zj_1)| = f(z;) — f(xj—1) and the sum becomes telescoping.
Example 173 Another good family of functions called Lipschitz are defined by
a constant C' such that, for any x,y € [a,b] : |f(x) — f(y)] < Clz —y|. The
absolute value function is one example. Lipschitz functions are all continuous
and differentiable almost everywhere. Note that

Z (zj) = f (- 1|<CZ|% zj_1|=C(b—a)

j=1

hence Lipshcztz functions are of bounded variation over a bounded domain.

100

f(zj—1)| =

V(_f7

P)



Example 174 We have seen in Problem 164 that if functions with bounded
upper and lower derivatives are Lipschitz. Thus, functions with bounded upper
and lower derivatives are also of bounded variation.

Example 175 Consider the function

with partition Py = {0, ﬁ, ?%N, e %, %, 1}. Computing the variation tells us

that each consecutive point applied on f give us zero and 1 on each subsequent
point for the cosine part. Thus, V (f, Py) = % + ...+ 1. Therefore, the function
f is not of bounded variation.

Proposition 176 TV (f[a,b]) =TV (f[a’c]) +TV (f[c,b}) ifa<c<b

Proof. Let P = {z; : 0 < j < n} be a partition of the interval [a,b]. Then, if
Jk such that z; = ¢, then by triangular inequality,

n k n
V (fae: P) = DI (@) = f (@m0 <D 1F (@) = F @)l + Y 1f (@) = f(25-1)]
Jj=1 Jj=1 j=k

= V(faa P') +V (fiea, P)
for some partition P’ of [a, c] and P” of [c, b]. Since this holds for any P, we have
TV (f[a,b]) <TV (f[a,c]) +TV (f[c,b])- Conversely, note that any paritition P of
[a,c] and P’ of [c, b] gives rise to a partition PUP’ of [a,b]. Thus, V (f[a,c]v P) +
V (fiew, P) <V (flap), PUP'). Tt follows that TV (fla) = TV (fla.e) +
TV (fier) ™

Theorem 177 (Jordan Decomposition) TV (f) < co <= f(x) = f1 (z)—
f2 (x) where f1, fo are both increasing

Proof. (= )Letp(z) =TV (f[a,x]). If z > y, then, TV (f[a’x])—TV (f[a,y]) =
TV (fiy,e1) = 0. That is, ¢ (z) > ¢(y). That is, ¢ is an increasing func-
tion. Now let ¢ () = f(z) + ¢(z). ¥ (x) is also monotone, regardless of
the behaviour of f: if © > y, then consider the partition P = {z,y}. Then,
f (LE) - f (y) < |f (J?) - f (y)| <71V (f[y,w]) =TV (f[a,a:]) -1V (f[a,y])' Simi-
larly for f (y) - f (IIJ) < |f ($) - f (y)| <TV (f[y,w]) =TV (f[a,w]) -1V (f[a,y])-
In summary, f(y) +TV (f[a,y]) < fle)+TV (f[a’x]) so that ¢ (y) < ¢ ().
That is, we have found ourselves an expression f (z) = ¥ (z) — ¢ (x), where ¥
and ¢ are both increasing.
(<= For any partition P = {z; : 0 < j < n} of the interval [a, b],

M=

oI () = f o)l = [f1(z5) = fr(@j—1) + f2 (zj-1) = fo (25)]
j=1

1

<.
Il

NE

1 () = f1(zi—)| + Y1 f2 () = fa (z-1))]
J=1
b) — fi(a) + f2 (b) — f2 (a) < o0

I
~ <.
~—~ '!‘

1
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m
Corollary 178 TV (f) < oo = [’ exists almost everywhere

Proof. By Jordan’s Decomposition, f = f; — fo where fi; and fo are both
monotone. By Lebesgue’s Theorem, both are differentiable almost everywhere,
as is their difference. m

Corollary 179 TV (f) < oo = f’ is summable
Proof. Follows directly by Jordan Decomposition and Corollary 168. m

Problem 180 Let TV (f) < oo on [a,b] and define ¢ (z) = TV (fla,41)- Show
that |f'| < ¢’ almost everywhere on [a,b]. Deduce that

/ | dmy < TV (f)
[a,b]

Solution 181 Since f is bounded variation, then [’ exists almost everywhere.
Moreover, since ¢ is increasing, ¢’ exists almost everywhere on (a,b). Let y
be such a point where f'(y) and ¢’ (y) are defined. Let x € [a,b] with z > y.
Consider the partition P = {x,y}. Then, f(z) — f(y) < |f(z) = f(y)] <
TV (f[y)x]) =TV (f[aw}) -TV (f[a7y]). Since x > y, there exists h > 0 such
that x = h +y. Then,

[ (hty) = F @I TV (iawsm) =TV (fow) _ ¢y +h) -0 )

h - h h

Since this holds for any such x, we can let h — 0 to get |f' (y)| < ¢ (y). Since
y was arbitrary, therefore |f'| < ¢’ almost everywhere.

Now, since ¢ is continuous and increasing on [a,b], as a real-valued function.
Then by Corollary 168,

/ @'dmy < ¢ (b) — ¢ (a)
[a,b]
From |f'] < ¢', we have

/[]If’ldml < /Hgo/dmlsww—so(a)
a,b a,b

= TV (fio)) = TV (flaa)) = TV (flap) =TV (f)

Definition 182 Let f : [a,b] — R be a function. Then, f is said to be ab-
solutely continuous if Ve > 0, 30 > 0 such that, if {(a;,b;): 1 <i<n} isa
family of disjoint intervals, then

n

ij—aj<5:>Z|f(bj)—f(aj)|<e

j=1 j=1
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These intervals may not be a partition of [a, b]. Note that continuity on [a, b]
may imply uniform continuity but uniform continuity does not imply absolute
continuity. Also note that the sum of two absolutely continuous functions is
continuous. Skipping this, we move to

Proposition 183 Let f,g be absolutely continuous on [a,b]. Show that the
function f.g defined by (f.g) (z) = f (z) g (x) is absolutely continuous.

Proof. First, we prove that f.g is continuous. Let xy € [a,b]. Since f,g are
both continuous, for any € > 0, we have 1, § and d3 such that
€

2(1g (o) +€)
|z —xo| <02 = [9(x) = g(0)| < m

|z —zo| <61 = [f(z) — fwo)| <

and
|z —xo| <3 = [g(z) — g(z0)| <|g(z0)| +€
Take 6 = min (61, 52, 53) Then,

(f.9) (x) = (f.g) (z0)]

= |f(x)g (@)= f(z0)g(xo)| = |f (x) g (x) — f(20) g () + f (x0) g (z) — [ (z0) g (z0)]
< [f(@)g(x)— f(20) g (@) + |f (z0) g () — f (z0) g (20)]
= |f(x) = f(zo)llg @)+ |f (xo)|lg(z) — g (x0)] < 2(lg @)+ lg (@)] + | f (w0)] 207 (@)
< m(|g($o)|+ﬁ)+|f@0)|m:€/2+6/2:€
n

Since the function f.g is continuous on a compact domain [a,b], it achives
its maximum and minimum by Extreme Value Theorem. Thus, f.g is bounded.
Let |f.g| <M

Now, given € > 0, we know that 391,02 (distinct from above proof!) such
that {(a;,b;) : 1 <i <n} is a family of disjoint intervals with

Dby —ay <01 = Y 1F (b)) — £ ()] < ¢/20M
and . .
ij —a; <0y = Z lg (b;) — g (aj)| < €/2nM
j=1 j=1
Let 6 = min {01, d2}. Then, for each j,
£ (b) g (b;) — f (a) g (aj)]
|f(b;) g (bj) — f(bj) g(a;)+ f(bj)g(a;)— f(a;)g(a;)l

< £ 05) 9 (b)) = £ (b3) g ()| + 11 (b5) 9 (aj) — f (a) 9 (a)]
= 17 03l lg (b5) — (@) +1F (55) = F (@)1 19 (a)]
o Wwle e  Me e

2nM 2nM T 2nM  2nM
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so that .
D 1F () g (bs) = f(a;) g(aj)] < =€
i=1

Thus, f.g is absolutely continuous.

Example 184 A good example is a Lipschitz function. Let |f (x) — f(y)] <
Clx —y|. Then,

STIF ) = Fla)l <CY_[by — ay
j=1 j=1

so that we can take 6 = ¢/C.

Example 185 An absolutely continuous function is Lipschitz if and only if | f'|
is bounded. To show this, let |f'| < c¢ and z,y € D(f), domain of f. Consider
the interval [x,y]. Then, f is absolutely continuous on [x,y] so that

Yy
/ fldmy

Converse follows from Example 174.

Y
=|f(y)—f(w)\§/ | dmy < emy [2,5] = ey — ]

Theorem 186 Let f be absolutely continuous. Then, f is of bounded variation.
Moreover, f = f1— fa where f1, fo are both increasing and absolutely continuous.

Proof. Take § for e = 1. Split [a,b] into N intervals of length < 6. N ~ 252,
These intervals are [a, b]. Then,

N

TV (f) = ZTV (f[ak7bk])

k=1
If P = {z : 0 < k < n}isapartition of [a;, b;], then {(zx, zp41) : 0 <k <n—1}

is a disjoint collection and

Z‘LL’]@,1 —{,C}c‘ = |bJ —aj| <= V(f7P) <1=17TV (f[aj,bj]) < 1 :>TV(f) < N
k=1

Now, denote f3 (z) = ¢ (z) =TV (flan) and fi (z) = f (@) + TV (flae]) =
¢ (). Tt suffices to show that ¢ (z) is absolutely continuous. Take § = €/2.

Assume that .
Zbk —ap <9
k=1

where {(ag,br) : 1 <k < n} is a disjoint collection of intervals. Now, consider
the partition Py of (ag,by). Then,

n

SOIF ) = flaw)l =D V(£ P) <e/2
k=1

k=1 =
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so that .
STV (flapn) S €/2<€

k=1

Now, by the linearity TV (f[ak,bk]) =TV (f[a,bk]) - (f[a,ak]) = @ (br) — v (ar)
so that

Y lo ) —p(ar)l <e
k=1

]

Thus, in addition to being absolutely continuous, we can always assume that
our function is increasing. However, note that there exists a function of bounded
variation which is not absolutely increasing. For example, any monotone func-
tion.

Problem 187 Let f be continuous on [0, 1] and absolutely continuous on [e, 1]
for each 0 < e < 1. Show that f may not be absolutely continuous on [0,1], but
it is if f in increasing.

Solution 188 For the first part, we want to have a function continuous on
[0, 1], absolutely continuous on [, 1] but not absolutely continuous on [0,1]. Con-

sider the function
1

_J xsing 2€(0,1]

f is continuous on (0,1] clearly, as it is the product of two continuous functions
on (0,1]. f is also continuous at 0: note that

|f () = F(O)] =

o1
xsm‘ < ||
T

since |sin%| < 1. Then,

lim £ (2) ~ £ (0)] <0 = lim f (x) = £ (0)

z—0

Moreover, f is differentiable on [e, 1] for any € > 0 and, by the product rule,
1 1 1 1 1 1
sin () — —cos <) = |f' (z)| = [sin <) — —cos <>‘
T T x T T x
. 1 1 1 1 1
sin{— ||+ |—cos|— || <1+—-—<1+ -
T x T T €
By Example 185, f is Lipschitz on [e,1]. Therefore, by Example 184, f
is absolutely continuous on [e,1]. It remains to show that f is not absolutely

continuous on [0, 1]. We can accomplish this by showing that f is not of bounded
variation. Let € > 0. Then, In such that € > 1/n. Consider the partition P

f' (@)

IN
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defined by ,41 = 0 < M+7r/2 < (nfl)ir+7r/2 < ..
xzj=1/(jm+7n/2) for j€{1,...,n} = J. Then,

1 jeJiseven
-1 jeJisodd

SIETY sind j=0
0 j=n+1
so that
zj j is even and j # 0
N —x; jisoddandj#n+1
FlE) =19 4n1 i=0
0 j=n+1
Then,
n+1
§£:|f($j)"f($j—1ﬂ = |z1 =0+ [z2 — @3] + ... + [sin 1 — 2,
j=1

= x1+ax0+x3+..4+x,+sinl

= sinl+ > 1/(jm +7/2)

j=1

The sum on the right is the (displaced) harmonic series, which diverges as n —
o0o. Hence the function is not of bounded variation.

Problem 189 Let f be continuous and increasing on [0,1] and absolutely con-
tinuous on [e, 1] for each 0 < € < 1. Show that f is absolutely continuous.

Solution 190 Since f is increasing, given ¢ > 0, we must have f (¢)— f (0) > 0.
Since f is continuous on [0,1], V&€ > 0 38’ such that |e—0| = ¢ < § =
[f(e)—f(0)] = f(e) — f(0) < &/2. Letn € N and T = {1,2,...,n}. Since
£/2 >0 and f is absolutely continuous on [e,1], 36" > 0 such that, for a family
of disjoint intervals {(a;,b;) : i € T}, each a subset of [e, 1],

n

Do lb—agl <8 =Y 1F (b))~ flay)| < €/2

j=1 j=1
Consider a finite family {(a;,b;) : 1 <i < m} of disjoint subintervals of [0,1].
Let T = {i:(a;,b;) Cle, 1]} and J = {i: (a;,b;) C[0,€]}. Note that if € €
(ai,b;), then a; < € < b; so that f (a;) < f(e) < f(b;). Moreover, |f (b;) — f(e)|
7 (bi)—1 (€) and |f () — f (a)| = £ ()—F (as) s0 that | (b:) — F ()| +1f (€) — £ (as)] =
|f (b;) — f (a;)|. Thus, the presence of € in an interval makes no difference in
the sum we are looking for, so we can assume that I U J = {1,2,.....m}. Now,
because f is increasing, we must have

/

> b aa|< = > 1F (b)) = f(a5)] < fe) = f(0) <&/2

JjeJ jeJ
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Moreover, WLOG, we can assume that |I| = |Z|. Thus, we can re-arrange terms
in J to get I ={1,2,...,n'}. Now let g = max {5/,5"}. Then, since € > aj,b;
for each j € J, we must have

0 1
Z\bj—aj\<§and2\bi—ai|<§
JjeJ i€l

so that

Sl el <8 = DIFB) o) < 5+ 5 =€
i=1 i=1

That is, for any & > 0 we can find a § such that for any finite family {(a;,b;) : 1 <i < m}
of disjoint subintervals of [0,1], the above holds.

If f is absolutely continuous on [a, b], we can always extend the domain to
[a, b+ ¢] for some constant ¢ and define f (z) = f (b) for = > b.

Definition 191 Let F be a family of functions. F is said to be uniformly
summable if Ve > 0, 36 > 0 such that

ml(A)<5:>/ gl dmy < €
A

forallg e F

Theorem 192 If f is absolutely continuous on [a,b], then {Dpf:0<h <1}
1s uniformly summable. That is, Ve > 0, 30 > 0 such that

my (A) <d = / |th‘ dm; < eVh
A

Proof. Observe that we can assume that f is increasing so that |Dy, f| = Dy, f.
Let € > 0. We need to find a § > 0 such that

/ thdml <€
A

whenever my (A) < §. Observe further that we have a G set G with A C G and
my (G\A) = 0. Therefore, WLOG, we can assume that A is a Gy set. Thus,
A is the countable intersection of open sets {G; : i € N}, with G,,+; C G,, and
my (G1) < oo and G, is a finite disjoint union of open intervals. This follows
from the construction in the proof of regularity of Lebesgue Measure because

my (Gn) — my (G) and
/Gn th—>/Gth

A:

as n — 0o. Now,

(as,b;)

-

i=1
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where intervals are pairwise disjoint and

1

n

2

To calculate

bj
/ thdml,

J

we observe that

h
55O =10+ F s+ =7 [ gyim

1 &
/A Dy fdm; = /0 (;g) dm,

Dgi=Y fbj+t)—fla;+1t) <e
=1 =1

so that
and for every ¢,

by absolute continuity of f, where ¢ does not depend on t. m

Lemma 193 Let {f; : i € N} be a family of real-valued, uniformly summable
functions. If f,, — [ almost everywhere, then for every A with m; (A) < oo, f

1s summable on A and
/ frndmy —>/ fdm,
A A

Proof. Since the measure of A is finite, we can split A into a union of N Ay’s,
where m;y (Ag) < 6 and 0 comes from the uniform summability of e = 1. Then,
by Fatou’s Lemma,

N
/Ifldmlgm/ |fn\dmlgmz/ (fol dimy.
A A k=17 Ak

Note that
[ flami <1 = [ \fldm <
A A
so that f is summable on A, f € L
Now, WLOG, assume that f = 0 and f,, > 0 (otherwise take |f,, — f|). By

Egoroff’s Theorem, 3 a set Ag C A such that m; (Ap) < ¢ and f,, uniformly
converges to 0, f, = 0 on A\ Ag. Thus, for n > N,

/ fndml :/ fndml + fndml < / fndml +€
A A\ Ap Ap A\Ap
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so that

m/ fndml S m fndml +m€
A A\Ap

€ does not depend on n so

m/ fndmlée:>h7m/ fudmy = 0.
A A
| |

Theorem 194 If f is absolutely continuous on [a,b], then f; fldmy = f(b) —
f(a)

Proof. Since f is absolutely continuous, it is of bounded variation. By Corol-
lary 178, Dy, f — f’ almost everywhere so that

b b b
/ f/dml = /J nli»n;o (Dl/nf> dmy = nh—{go/” (Dl/'nf) dmy

a

by the previous lemma. Set h = % Then,

b a+h a+h
lim / (Dyf) dmy = lim [; <hf(b)— / fdmlﬂ ~ lim lf(b)—,i / fdmll

where the first equality follows similar line of reasoning as in the proof of Corol-
lary 168. The proof can then be completed by observing that since f is con-
tinuous,

a+h
}lli%/a fdm1 = f (CL) .
]

Theorem 195 (Fundamental Theorem of Calculus) If f is absolutely con-
tinuous on [a,x], then f (z) = f (a) + faw f'dmy for every x.

Theorem 196 If f is absolutely continuous on [a,b] if and only if there exists
a g€ L (my) such that f (x) = f(a)+ [ gdmy for every x

Proof. («<=) Take g = f’
(=) Let g € £ (my). Then, |g| € £! (m;) so that Ve > 0, 3§ > 0 such that

ml(A)<5:>/gdm1<e.
A

If {(aj,b;) : 1 <k <mn}is a disjoint collection of intervals, then

n

> (b —a;) <d

j=1
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so that

n

Do) = flapl = Y

/ gdmy
j=1 j=1 (aj,b;)

Z/ g dm; < e
j=1 (aj,b;)

IN

Corollary 197 If f is increasing on [a,b] and

b
[ ram=50)- @
then f is absolutely continuous.

Proof. Assume for the sake of contradiction that f is not absolutely continuous.
Then, from Theorem 196, we may assume that

x b
[ rimi < f@) - fla) bt [ pdm < £0)- £ @)
Then,
T b
[ rimis [ pam<ie)- s @
a contradiction. m

Problem 198 Let f be absolutely continuous on [a,b] and f' =0 almost every-
where. Prove that f is constant.

Solution 199 Let f (a) = ¢ and x € [a,b]. Since f is absolutely continuous on
[a,b], we must have

/1. fdmy = f(2) — f (a)

However, since f' =0 a.e., the LHS of the above equation is zero. Hence f (z) =
f (a) = c. Since x was arbitrary, we are done.

Proposition 200 For a summable function f,
y
f=0ae — / fdm; =0 Vz,y € [a,b]

Proof. Observe that the forward direction (=) is trivial. For the reverse

direction,
/fdml =0
I
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for every I tells us that

/Gfdml =0

for any open G so that the integral has the same value for any Gy set and so,
we have the same value for any measurable set and for set of measure 0. Take
Et ={z: f(x) > 0}. This set is measurable. Then,

fdm; =0
E+
but note that
fdm1 = / f*dml =0
B+ [a,b]

so that fT is zero almost everywhere. Similarly, for E~ = {x : f (x) < 0}. Then,

fdm1 =0
-
but note that

fdmy = frdm; =0
E- la,b]

so that f~ is zero almost everywhere. Since f = f* — f~, we have that f is
zero almost everywhere. ®

Theorem 201 If f is a summable function on [a,b], then for almost every
z € (a,b), we have

d T
%/ fdmy = f (x)

Proof. Let N

Then, f is summable so that F' is absolutely continuous and F (a) = 0. This
tells us that

F(z) = / Fldm,

Subtracting both integrals gives us

LI(F/_f)dmIZO

for every z € [a, b] so that

y y
/(F/—f)dm1:O:>/ (F' — f)dmy; = 0 for any x,y

= F' = f almost everywhere by Proposition 200. =
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Problem 202 Let f be continuous on [a,b], differentiable almost everywhere.
Then

b
[ rami=50)- @
if and only if
b b
/ lim Dl/nfdml = lim / Dl/nfdml

Solution 203 (=) Referring back to the reasoning in Corollary 168, we

know that
b 1 b+h a+h
/ thml = - (/ fdm1 —/ fdml)
a h b a
so that
b b
lim / Dyjpdmy = }llin}) Dydmy
1 b+h a+h
= Jim /b fmy — / fdm
= f(b)—fl(a)

Now, since f is differentiable almost everywhere, then

fle+1/n) - f ()

Then,
b b
[ Jim Dyugam = [ fdm = 5 0) - 5 (0
Thus,
b b
lim Dl/ndml = / lim Dl/ndml
(<) Since
b b
/ lim Dl/ndml :/ f’dm1
and
b b
dm [ Dyim = i, [ Dyam,
1 b+h a+h
= 1. - -
hli%h /b fdm /a fems
= [(b)—f(a)
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Given that . )
/a nlirr;ODl/ndml = nlingo/‘l Dy jpdmy
it follows that ,
[ rimi= -1
We even the famed product rule!

Problem 204 Let f and g be absolutely continuous on [a,b]. Show that

b b
/ fg'dmy = f (b)g () —  (a) g (a) - / 1 gdm,

Solution 205 By Proposition 183, f.g is absolutely continuous on [a,b]. Re-
call that (f.g) = fg' + f'g. Also recall that absolute continuity on [a,b] of f
(and g) tells us that

b b
/ fldmy = £ (b) — £ (a) and / ddmy = g (b) - g(a)

Then,

b b b
[ #rgam s+ [ ggim = [ (7o) dm = F )9 0) - f@)g ()
Rearranging this gives us the desired result.

Problem 206 Let f be strictly increasing and absolutely continuous on [0,1].
Show that

1. If G C (0,1) is open, then
[ Fam =mi (7(6)
G

2. Show the same when G is a G5 set
3. Show the same when my (G) = 0.

4. Deduce that the same is true for any measurable set G.

Solution 207 1. Since G is open, G is a disjoint union of half-open intervals
{I; : i € N}, where I; are allowed to be empty for some i and that my (I;) € [0,1)
for each i. Thus, we can have

/G fdm, = /U | Jdmi = i:; /1 i, ©)
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Let end-points of interval I; be a; and b;, where a; < b; (half open degenerate
intervals are empty). Since f is strictly increasing and absolutely continuous on
[0, 1], we must have, for each i,

/ fdmy = £ (b;) — f (az)

I;

Since - -
my (G) = Zml (Iz) = Zbl — Q;.
=1 i=1

Moreover, since f is increasing and b; > a;, by Problem 30, we must have

my (f (L)) = f(b;) — f(a;). It follows that

> omi(f(L) =D f (b)) = f(ai) =my (£(G)).
i=1 i=1
By Eq. (9), we are done.
2.
3.

4. Let E be a measurable set. Then, E can be written as the disjoint union
of countable number of open, half-open, degenerate intervals and Gg sets. Let

E={JB = fE)=J5E)

i=1 i=1

Since f is strictly increasing, f (E;) is pairwise disjoint. Moreover, if a; and b;
are (not necessarily distinct) endpoints of E;, then wmy (f (E;)) = f (b)) — f (a;)
so that

Zml (f(Ey)) = Zf (bi) = f (a;) =my (f(E))

It follows that

/Efdm1 _ ;[Eifdml = D (7 () = mi (7 (£)

As seen above, the notion of absolute continuity is closely tied the the Fun-
damental Theorem of Calculus for the Lebesgue integral and filters the idea of
bounded variation, crucially relying on compatibility with arbitrary but disjoint
sums. Can we do better than disjoint sums? Let us agree to call a function
f : [a,b] — R super absolutely continuous if for any ¢ > 0, there ex-
ists a § > 0 such that for a finite family of intervals (not necessarily disjoint)
{(a;,b;) : 1 <i < n}, we have

n

Z(bj—aj)<5=>Z|f(bj)—f(aj)|<€

j=1
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Is it true that f is absolutely continuous implies that f is super absolutely
continuous? No. Let ¢ > 0 and consider f : [0,1] — [0, 1] defined by = — /=.
Then, by Archimedean’s Principle, In such that € > % Now, consider the family
{(0,1/¢) : 1 <4 <n}. Then,

Zlf(l/j)—f(t))l :Zu¢3<n<6

for any §. However, \/z is absolutely continuous. To show this, observe that \/x
is increasing on [0, 1]. Moreover, since f’ is continuous on (0, 1), it is Riemann
Integrable, so that

1 z q
f o amim= ] sptr=r@-s0=va

Hence f is absolutely continuous on [0, 1].

4.3 A Pathological Function

When we were building the Cantor set C, at the k-th step, we threw away, in
total, 2¥ — 1 open intervals (this includes those thrown away at k-th step!). Let
Or =If UI§U...U Ik | Dbe the union of these open intervals at the k-th step.
Note that O C Opy1. Define ¢ (z) = m/2F for z € I¥ . To show that ¢ is well-
defined, let us explore some of its values. At k =1, ¢ (z) = 1/2 in the middle
erased interval and at k = 2, ¢ (z) = 2/22 in the same interval. Moreover, in the
second erased interval (1/9,2/9), ¢ (x) = 1/4 and at (7/9,8/9), ¢ (z) = 3/4.
Now, to show that ¢ is indeed well-defined, assume I C O and I C Ogy;.
Then, I =I5t and I = I¥ so that in O, ¢ (x) = 2m/2F+1 = m/2F.
@ is increasing on each Oy. Let

0= Gok
k=1

and define ¢ (0) = 0. Then, ¢ () =sup{p (t):t<z:t€ 0,z €[0,1]\O = C}

¢ is continuous on O. To show this, note that ¢ is constant on each open
interval. However, ¢ is not constant on [0,1]. Moreover, m; (O) = 1.

Let 29 € O, then ¢ (xg) is constant around xy. Assume that xy € C' where
1 # xo # 0. If k is any number, then z, lies between I¥, and I, . The idea
is that if ¢ is not continuous at xg, it only has the choice of jumping at xzg
since ¢ is increasing on a closed and bounded interval. Take by € IF¥_ ., and
ap € I¥. Then, aj, < ¢ < by and that ¢ (a) = s and ¢ (bg) = '”2—',':1 Thus,
@ (br) — ¢ (ax) = 1/2%. As k increases, the jump vanishes: if ¢ has a jump at
xo, we always have, for some § > 0, ¢ (b) — ¢ (a) > ¢ if a < g < b where
¢ (b) 2 ¢ (zg) and ¢ (a) < ¢ (zq) so that ¢ (b) — ¢ (a) > ¢ (27) — ¢ (), a
contradiction.

© is not absolutely continuous since the fundamental theorem does not hold.
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Proof. Let O = [0,1]\C. Let us look at ¢ (O). Since

o-Un
k=1

where I}, are disjoint intervals, not necessarily in increasing order. By construc-
tion, 9[; is constant for each k. Note that ¢ (Ix) = I + ¢, where ¢ (I}) = c.
Thus, ¢ translates I, and so my (¢ (Ix)) = my (I). Moreover, {¢ (I) : k € N}
is a disjoint family since ¢ is increasing. Thus,

my (‘P (O)) = Zml (%0 (Ik:)) = Zm1 (Ik) =m (O) =1
k=1 k=1

Note that ¢ (O) N ¢ (C) = & and that my (¢ ([0, 1])) = 2 so that my (¢ (C)) =
2—-m;(¢(0)=1. =m

Corollary 208 3 a subset of a Cantor set A, measurable by completeness of
Lebesgue measure, such that ¢ (A) & M.

Proof. We will use the fact that [0,1] has a non-measurable set. Any subset
E C [0,1] (not necessarily with finite out measure) with m; (E) > 0 contains a
non-measurable subset (exercise). Therefore, 3B C ¢ (C) such that B ¢ 9.
Now, define A = ¢~ (B). Then, ACC but B=¢(A) ¢ =

As a remark, we state without proof that if A € £; and f is a strictly
increasing and continuous function, then f(A) € £;. To show that, one may
proceed by observing that A may be split into intervals. We can now show that
£1 is not complete.
Proof. We need to show that 34 € 9t; but A ¢ £;. Take A C C. Then,
¥ (A) € My. Since my (C) =0, A € M. If A was in £4, then by previous fact,
Y (A) € £1 C My, a contradiction. Thus, (R, £1,m;) is not complete. m

5 Differentiation of Measures

In this section, our big goal is to split our master set X into a positive and
negative set, where positive and negative have a different technical name.

5.1 Signed Measures

Definition 209 Let A be a o-algebra on X, and v : A — [—00,00]. Then, v
15 called a signed measure or a charge if

1.v(@)=0

2. v assumes either +00 or —oo for any A € A

116



3. If {Ar : k € N} C U is a family of disjoint sets, then
A= JA = v(4) = v(4y)
k=1 k=1

and the series converges absolutely if |v (A)| < co.

We call a set A € 2 positive if for every measurable E C A, we have
v (E) >0 and null if for every measurable E C A, we have v (FE) =0

Example 210 Assume that we have two signed measures, fiy, tho. Then, (i — iy
18 mot necessarily subadditive hence not even countably additive. However, it is
additive and gives zero at the empty set.

Example 211 Let f be a p-measurable function, then
o) = [ sn
A

is a signed measure. Notice that if we let ET = {z: f(z) >0} and E- =
{z: f(z) <0}, then X = E~ UE™ and

| san= [ rrapand [ gan= [ a

Proposition 212 If A is positive, E C A is measurable, then E is positive.
Proof. Obvious =

Proposition 213 If {4, : i € N} is positive for each i, then so is the union of
the family.

Proof. Let

00
E C UAk
k=1

and E1 = EﬂAl, E2 = (E N AQ) \El, ,En = (E N An) \ (E1 u...u Enfl) and
pairwise disjoint. Then, v (Ej) > 0 for each k and

v(E) = iv (Ex) >0
k=1

Lemma 214 (Hahn) Let 0 < v(A) < oo. Then, there exists a positive set
E C A withv(E)>0.
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Proof. If A is positive, we are done, since A has strictly positive measure. If
A is not positive, then JAC Av (ﬁ) < 0. Let

my :min{meN:ElgCA,v(/T) < —1/m}

and take A; with v(A;) < —1/m;. If A\A; is positive, then we are done.
Otherwise, let

mo = min {m eN:3JA C A\A;,v (ﬁ) < —1/my,v(4z) < —1/m2}
Assume that we have Ay, ..., A,. That is, at the n-th step, if
n
A\ Ax
k=1

is not positive, we have
My = min{m eN:3JAC A\UAk,U (A) < —=1/my,v(4,) < —1/mn}
k=1

Now we have 4,41 C A\ (A1 UAyU...UA,) withv (4,,41) < —1/m,,. We now
claim that

E= A\GAn
n=1

is positive. Note that the A is the union of two disjoint sets:

A=FU GA” = v(A)v(E)+v<[jAn>

n=1 n=1

v (A) < 00, then the right hand side is also finite. In particular, v for the infinite
union is finite. Thus,

e 1
2

Sl < 00 = —0< Y v(d) <
n=1 n=1

n=1
1
— E—<oo:> lim m,, = o
1 n n—oo
n—

Now let B C E. Our goal is to show that v (B) > 0. Note that we can have an
N € N such that

00 N
Bc A\[J4, c A4,
n=1 n=1

Then, because my was the minimum, we have v (B

) > 1/(my —1). This is
true for every N so we can apply limit and get v (B) > 0.
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Now, finally

v(A) >0 = v(A\E)v(A)’u(E)v([jAn> <0

n=1

so that v(E) > 0. m
Essentially, for any given set X, we can split X into two disjoint sets, one
for positive and the other for negative

Theorem 215 (Hahn Decomposition) Letv be a signed measure on (X, ).
Then, 3A C X with A positive and B C X with B negative such that X = AUB
and ANB =0

Proof. WLOG, we can assume that v is never co. If v (E) < 0 for every E C X,
then set A = & and B = X. If there exists an E with v (E) > 0, then, by Hahn’s
Lemma, we can have a positive subset. Let A = sup{v (F) : E is positive}.
Note that A > 0. By definition of supremum, there exists a sequence of sets
{Aj : k € N} such that v (4;) — X as k — cc.

Set -
A=A
k=1

since union of positive sets is positive, A is positive. Thus, A > v (A). On
the other hand, A\A; C A so that v (A\Ag) > 0. Since both sets have finite
measure, we have v (A) > v (Ay) for each k. Taking limit on both sides, we get
A<wv(A). Thus, A =v (A).

Now let B = X\ A. We need to show that B is negative. If not, then there
exists an £ C B with v (E) > 0. Thus, there is a positive subset E C E such

that 0 < v (E) Then, AU E is also positive. Moreover, v (4) + v (E) >

v(A) = A, a contradiction to the fact that A\ is the supremum. Thus, B is
indeed negative. m
We then get the following useful corollary, which we state without proof.

Corollary 216 (Jordan Decomposition) Ifuv is a signed measure, then there
erist two measures v and v~ (not signed!) such that v = vt — v~ and there
exist sets A and B such that AUB =X, ANB=g,v" (B)=v"(A) =0.

Problem 217 This Jordan Decomposition in unique

Solution 218 Assume that 3 measures vt and v~ (not signed!), positive A € A
and negative B € A such that X = AUB and ANB = @ such thatv =vT —v~
and vt (B) =v~ (A) =0. Letv =™ —pu~ be another Jordan decomposition of
v with positive and negative A’ and B'. We first need to show that consideration
of different sets is immaterial.

Consider ANA" = AUA\ (AN A"). Let EC (AU A"\ (AN A’) be measur-
able. In particular, E C AU A’. Then, v(E) > 0. Since (AUA)\(ANA") =
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(AUA )N (AU A°) = (AUA )N (BUB'), then, in particular, E C BU B'.
Hence v(E) <0 so that v(E) = 0. Thus, AN A’ is a null-set with respect to
v. Similarly, B /A B’ is a null set with respect to v.

Now let us focus onv = u™—u~. By above, we can work with same A and B.
Let E € A. Then, ENA C A sothatv(ENA)=vt (ENA)—v~ (ENA). Since
E N A is positive, v~ (ENA) =0. Thus, v(ENA)=v"(ENA). Now, since
vt is a measure and A is vt -measurable, for any set E, vt (E) =vT (ENA)+

T(ENAY) =vT (ENA)+vt (ENB). Since ENB is negative, vt (EN B) =
0.

Thus, vt (E) = vT (ENA) = v(ENA). Since v(AAA") =0, we must
havev(ENA)=v(ENA"). Also sincev = pu"—pu~, we can have v (ENA") =
(Wt —p ) (ENA) = um(ENA) —u (ENA). Since EN A’ is positive,

“(ENA')=0. Hencev(ENA)=ut (ENA).

Thus far, we have that v* (E) = o7 (ENA) = ut (ENA"). Now, again,
pt(B)=pt (ENA)+ut (ENA)=pt (ENA)+ut (ENB)=ut (ENA)+
0.

In summary, for any E, vt (E) = u* (E). Hence vt = u*. Combining
this with the assumption that v — v~ = put — u= gives us v~ = u~. Thus, the
Jordan decomposition is unique.

Problem 219 For a signed measure, define
o] (B) = v (E) +v™ (E).

Show that |v| (E) is equal to

sup Y _ |v ()l
k=1

where supremum is taken over all finite disjoint families {Ey : 1 <k <n} of
measurable subsets of X.

Solution 220 Let E € A. Then, v(E) =vt (E)—v™ (E) <ot (E) <vt (E)+
v~ (E) = |[v| (E). Conversely, —v (E) =v~ (E) —v" (E) <v™ (E) <v" (E)+
v™ (E) = |v| (E). Thatis, — |v| (E) < v (E). Together, these imply that |v (E )| <
|v| (E) for any measurable E. Let {Ej : 1 <k <n} be a disjoint family of E
Then, note that

o] (B) = v (B) + 0™ (B) = Y v (Bp) + Y v~ (Bx) = ) o] (Ex)
k=1 k=1 k=1

Moreover, we have that |v (Ey)| < |v| (Ex) Vk. Thus,

n

Yo (B <D ol (Br) = o] (B)
k=1

k=1
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Since this holds for an arbitrary decomposition of E, we must have

sup Y _ |v(Ex)| < |o] (E)

k=1

On the other hand, by Hahn Decomposition, 3 positive A and negative B such
that X = AU B. Then, |[v|(X) = vT (A) + v~ (B) = |v" (A)] + [v~ (B)|
with AN B = @. Now, note that for any measurable E can be partitioned
using these positive and negative sets (which is a candidate for the supremum)
since E = ENX = EN(AUB) = (ENA)U(ENB) and that |v|(E) =
FE)+v (E)=vT (ENA) +v (ENA)+vT (ENB)+v (ENB)
=vT (ENA)+v (ENB)<v(ENA)+v(ENB) < |[v(ENA)|+jv(ENB)|.
Thus, the other side of the inequality holds.

Assuming that f is positive and measurable and that

/Efd,uZO

whenever p (E) = 0, then for any measurable set A, we can define the measure

:/Afdu

Thus, if v and p are defined on (X, 2), we say that v is absolutely continuous
with respect to p if p(E) = 0 = v (E) = 0. The notation in this case is
v <L U

Theorem 221 Assume that v (X) < co. Then, v < p <= Ve >0, 3§ > 0:
VEcUAu(E)<d = v(E)<e

Proof. (<) Fix any ¢; take E with u(E) = 0. Then, p(F) =0 < § =
v (E) < e. Since this is true for any ¢, then v (E) = 0.

( = ) For the sake of contradiction, assume that the conclusion fails. Then,
Jdep > 0:V9 > 0,3E € 2, which depends on 0, pu(E) < § but v (E) > e.

Let E,, be subsets of E such that p (F,) =1/2" and let

Now let -
A= () Ay
N=1
Then, p(A) < p(An) < 1/2V71 for every N so that u(A) = 0. However,

v (A) > 0: to see this, note that v (Ax) > v (En) > €. Since v (4;) <v(X) <
00, then v (4) = A}im v(AN) > €. That is, v(A) > 0. =
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Example 222 Toke p = my and v = §g measure. The latter works like a charge
at 0. Then, it is not true that v < p because p ({0}) =0 dut v ({0}) = 1.

Theorem 223 (Radon-Nikodym) If v, u are both o-finite measures on the
same o-algebra A and v < u, then 3 a nonnegative, measurable (not necessarily
summable) function f such that v(E) = [, fdpu.

Proof. Assume pu,v are both finite. Also assume that v (X) > 0, for otherwise
f = 0 works and gives us the trivial case. For t > 0, denote A\, = v — tu. Ay is
a signed measure but not necessarily nonnegative. We can have sets P; and V;
which are, respectively, positive for A; and negative for A; with P, N; = @ and
P, U N, = X by the Hahn Decomposition. We need to fix . We claim that 3t
with g (P;) > 0. Assume that is not true. Then, for VE € A, we have A\, (F) <0
since )\t(E) :/\t(EﬂPt)—l—)\t(EﬂPtc) :)\t(EﬂPt)—l—)\t(EﬂNt)

= )\t(EﬂPt) = (U—t,u)(EﬂPt) = U(EﬂPt) —tu(EﬂPt) S 0. ThllS,
v (X) < tu(X) for every t. But then, v (X) = 0, a contradiction.

Now, define the family

]—"_{fzo:/fdlugv(E)VEEQ(}
E

This set is non-empty since f = 0 € F. Is there a non-trivial function? Define
f =t.xp, where ;1 (P;) > 0. Then,

/ fdu=tu(ENP,)
E

Since At (E N P;) > 0, we must have tu (ENP) <v(ENE) <v(E)
We need to find the “biggest” possible f. Let us consider the “average”.

M:sup/ fdu
X

fer

Then, M > 0. Our next goal is to show that the supremum is actually obtained
by showing that 3f € F with

M=Aﬂm

Observe that if f,g € F, then h = max (f,g) € F. To show this, if £ € 2, take
Ei={ze€E:f>g}and By ={x € F: f <g}. Then,

/hdu:/ hdu+/ hdy = fdp—k/ gdp < v () +v(Ey) <v(E)
E E1 E2 El E2
Now let {f, : n € N} C F such that

/EWHM
X
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Take g, = max(fi,..., fn). Then, g, is an increasing sequence and g (z) =
lim g, () is well-defined. By Monotone Convergence Theorem,
n—oo

/ gdp = lim [ gndp
E n—oo E

Since each g,, € F, then, for each n, the left hand side is less than the limit of
v (E). That is, v (E) itself. On the other hand,

/gduz/gnduHM = /gdu=M
X X X

Now assume that for the measure space (X,2), u and v are o-finite on X.
Then, 3{X,, : n € N} C A such that

where m; (X,,) < oo for each n. WLOG, we can assume that X,, C X, .
Restricting p on the subspace c-algebra Ax, = {EN X, : E € A} gives us a
finite measures ply = p, and vly  :=wvy onox, foreachn since my (X,) <
00.

This enables us to use the previous case of v and p being finite measures;
for each n, we can find a unique function f,, measurable with respect to Ax,,
such that

vy (E) = / fndp,, for all B e Ax
E

Now, if n <m, then X,, C X,, so that %x, C 2Ax, . Thus, u, is the restriction
of p,, such that p, = p,, for E € Ax, . That is, p,, can be extended to p,,. It
follows that

for all E € Ax, , vy (E) = / fadp,, = / @iy, = Vi (E)
E E

so that v, is the restriction of v,,. Since f, is unique, f, = f,, for all X,,\ A
where p,, (A) = 0. Therefore, if F' € 2, then

vy (FNX,) = /andun for all F € 2

Note that F' N X,, C FN X, since X,, C X,,4+1 and that

F=FNX=Fn Gxnz G (FNX,)
n=1 n=1

Thus, by continuity from above,

n—oo

v(F)=v (G (FﬂXn)> = lim v, (FNX,)
i=1
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|
Let g, = max{fi,..., fn}. Then, {g, : n € N} is a monotone increasing se-
quence of sets in X. Let ¢ = lim g, (we don’t necessarily need g to be sum-
n—oo

mable). Since for each n, g, is p-measurable, then g is also p-measurable.
Moreover, by Monotone Convergence Theorem,

/ lim g,du,, = lim gndpe, = / gdp
F F

NXny oo n—oo FnX,

so that there exists a y-measurable function g such that, for any F € A

V(F)=/ngu

Problem 224 (a) Characterize the measure spaces (X, U,u) for which the count-
ing measure M is absolutely continuous with respect to p; and (b) characterize
the measure spaces for which, given x € X, the measure d, is absolutely contin-
uwous with respect to .

Solution 225 (a) We know that for any E € A, p(F) =0= M(E) =0. In
other words, M(E) # 0 = p(F) # 0. If M(E) # 0, then E is non-empty.
Since M is defined on 2%, we must have u defined on A = 2% with p (E) # 0
(that is, p (E) > 0) for any non-empty set E. Thus the spaces (X,2,u) we are
looking for are precisely those for which there are no non-empty sets of measure
0.

(b) Let © € X be fized. Then, for any E € A, n(F) =0 = §,(E) = 0.
In other words, 0, (E) # 0 = u(E) #0. That is, §, (F)=1= u(E) > 0.
That is, x € E = u(F) > 0. Thus, given x € X, the spaces (X, A, 1) we are
looking for are precisely those for which there are no non-empty sets containing
x of measure 0.
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