
Abstract

Notes for MAA-5616 Measure Theory I, taught by Dr. Alexander Reznikov in Spring 2019. In these notes, $A \backslash B:=A \cap B^{c}$. Also, the statement " $A \subset B$ " does not necessarily mean that A is a proper subset of B. Homeworks have been included in these notes and are labelled as "Problem". Knowledge of basic set theory is assumed, as is familiarity with an introductory course on Real Analysis.

I accept sole responsibility for errors, of which I believe there will be many. Please feel free to offer feedback at amalik at math dot fsu dot edu

INTRODUCTION TO MEASURE THEORY

July 31, 2019

Contents

1 Measure 1
1.1 General Measure Spaces 1
1.2 Completion of Measure 9
1.3 Construction of Measures 11
1.3.1 Lebesgue-Carathéodory Theorem 16
1.4 Lebesgue Measure 23
1.4.1 A non-measurable Set 28
1.4.2 Cantor Set 30
2 Functions on Measure Spaces 33
2.1 Measurable Functions 33
2.2 Simple Functions 39
2.2.1 Approximation of Measurable Functions 40
3 Integration 46
3.1 Integral of Simple and Measurable Functions 46
3.2 Integral of Sequence of Functions 52
3.3 Integral as a Measure 59
3.4 Integral of Continuous Functions 63
3.5 Convergence in Measure 71
3.6 Riemann Integral 75
3.7 Product Measures 78
4 Classification of Functions 89
4.1 Differentiability 89
4.2 Functions of Bounded Variation 100
4.3 A Pathological Function 115
5 Differentiation of Measures 116
5.1 Signed Measures 116

Syllabus

The purpose of this course is to introduce the notion of measure spaces and integrals against general measures; in particular, to construct the Lebesgue measure and Lebesgue Integral

Text book: Real Analysis by Royden and Fitzpatrick
Course Objectives: The purpose of this course is to introduce the notion of measure spaces and integrals against general measures; in particular, to construct the Lebesgue measure and Lebesgue integral.

Homeworks: Weekly graded homeworks will be given. Students are encouraged to collaborate on homeworks, but every student should write the final solutions on his or her own. It is crucial for passing the qualifying exam to understand every homework problem in all details.

Grading: There will be a midterm, a final exam, and weekly homeworks
University Attendance Policy: Excused absences include documented illness, deaths in the family and other documented crises, call to active military duty or jury duty, religious holy days, and official University activities. These absences will be accommodated in a way that does not arbitrarily penalize students who have a valid excuse. Consideration will also be given to students whose dependent children experience serious illness.

Academic Honor Policy: The Florida State University Academic Honor Policy outlines the University's expectations for the integrity of students' academic work, the procedures for resolving alleged violations of those expectations, and the rights and responsibilities of students and faculty members throughout the process. Students are responsible for reading the Academic Honor Policy and for living up to their pledge to "...be honest and truthful and ... [to] strive for personal and institutional integrity at Florida State University." (Florida State University Academic Honor Policy, found at http://fda.fsu.edu/Academics/AcademicHonorPolicy.) To summarize, violations of these policies will result in a rather messy affair for you and me, so just don't do it.

Americans with Disabilities Act: Students with disabilities needing academic accommodation should: (1) register with and provide documentation to the Student Disability Resource Center; and (2) bring a letter to the instructor indicating the need for accommodation and what type. Please note that instructors are not allowed to provide classroom accommodation to a student until appropriate verification from the Student Disability Resource Center has been provided.

This syllabus and other class materials are available in alternative format upon request. For more information about services available to FSU students with disabilities, contact the Student Disability Resource Center

874 Traditions Way
108 Student Services Building Florida State University
Tallahassee, FL 32306-4167
(850) 644-9566 (voice)
(850) 644-8504 (TDD)
sdrc@admin.fsu.edu
http://www.disabilitycenter.fsu.edu/
Syllabus Change Policy: Except for changes that substantially affect implementation of the evaluation (grading) statement, this syllabus is a guide for the course and is subject to change with advance notice.

1 Measure

1.1 General Measure Spaces

In general, a measure is a function applied on a collection of sets. Both the function and the domain have special properties. The ultimate idea is to define a function that somehow "measures" a decent set. This measurement may be in the form of length, volume, number of elements or other appropriate sense of measure. In general, the function itself must follow some commonsense properties, one of them being that the measure of union of disjoint sets must be the sum of measures.

To get other commonsense properties, the collection on which the function acts must have some structure to them. This is defined as follows: for any nonempty set X, the collection \mathfrak{A} of subsets of X is called a σ-algebra, denoted by (X, \mathfrak{A}), a measure space, if

S1 $X \in \mathfrak{A}$
$\mathrm{S} 2 A, B \in \mathfrak{A} \Longrightarrow A \backslash B \in \mathfrak{A}$
$\mathrm{S} 3\left\{A_{i}: i \in \mathbb{N}\right\} \subset \mathfrak{A} \Longrightarrow \bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A}$
Elements of a σ-algebra are called measurable.
For any σ-algebra $\mathfrak{A}, \varnothing \in \mathfrak{A}$ and \mathfrak{A} is also closed under countable intersections.
Proof. For the first claim, let $A \in \mathfrak{A}$. Then, $A \backslash A \in \mathfrak{A}$ by $\mathbf{S} 2$ so that $\varnothing \in \mathfrak{A}$.
Let $\left\{A_{i}: i \in \mathbb{N}\right\} \subset \mathfrak{A}$. Since $X \in \mathfrak{A}$ by $\mathbf{S} \mathbf{1}$, for each $i, X \backslash A_{i}=A_{i}^{c} \in \mathfrak{A}$. We also have

$$
\bigcup_{i=1}^{\infty} A_{i}^{c} \in \mathfrak{A}
$$

by S3. Since $X \in \mathfrak{A}$, again by $\mathbf{S 1}$, we have

$$
X \backslash \bigcup_{i=1}^{\infty} A_{i}^{c} \in \mathfrak{A} \Longleftrightarrow \bigcap_{i=1}^{\infty} A_{i} \in \mathfrak{A}
$$

Definition 1 Let (X, \mathfrak{A}) be a σ-algebra. A measure μ on (X, \mathfrak{A}) is a function $\mu: \mathfrak{A} \longrightarrow[0, \infty]$ such that

M1 $\mu(\varnothing)=0$, and
M2 For a disjoint family $\left\{A_{i}: i \in \mathbb{N}\right\} \subset \mathfrak{A}$,

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

The triplet (X, \mathfrak{A}, μ) is then known as a measurable space. The property M2 is known as the countably additive property.

Example 2 Let X be any (countable) set. Define $\mu: 2^{X} \longrightarrow[0, \infty]$ as $\mu(A)=$ $|A|$.

Such a μ is called the counting measure. For our second example, we will need to be a little more precise since that concerns what's called the Borel σ-algebra on \mathbb{R}, \mathfrak{L}. \mathfrak{L} is the smallest σ-algebra that contains all open sets of \mathbb{R}. Obviously, \mathfrak{L} cannot contain only open sets A of \mathbb{R} since, by definition, we must have $A \in \mathfrak{L} \Longrightarrow A^{c} \in \mathfrak{L}$, where A^{c} "should" be open as well, but that is not the case. The σ-algebra is generated by adding all countable unions, countable intersections, and relative complements of all open (under the usual topology) subsets of \mathbb{R}. A process, called completion of a measurable space which we will see in $\S 1.2$, turns $\left(\mathbb{R}, \mathfrak{L}, \mathfrak{m}_{1}\right)$, the measurable space using Borel σ-algebra with the Lebesgue Measure, to ($\mathbb{R}, \mathfrak{M}_{1}, \mathfrak{m}_{1}$), the Lebesgue Measurable Space. This fact will not be proved in these notes but the machinery to do so will be developed as we move on, as will many details of the latter space. And we have already moved ahead of ourselves. At any rate, a measure has the following properties:

Lemma 3 Let X be a non-empty set and let μ be a measure on (X, \mathfrak{A}). Then,
Finite Additivity If $\left\{A_{i}: 1 \leq i \leq n\right\} \subset \mathfrak{A}$ is a collection of pairwise disjoint sets, then

$$
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

Monotonicity $A, B \in \mathfrak{A}$ with $A \subset B \Longrightarrow \mu(A) \leq \mu(B)$
Complementation $A, B \in \mathfrak{A}$ with $A \subset B$ and $\mu(A)<\infty \Longrightarrow \mu(B \backslash A)=\mu(B)-\mu(A)$
Subadditivity If $\left\{A_{i}: i \in \mathbb{N}\right\} \subset \mathfrak{A}$, then

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

Proof. Finite additivity

Let $A_{n+k}=\varnothing$ for $k=1,2, \ldots$ Then, $\left\{A_{i}: i \in \mathbb{N}\right\} \subset \mathfrak{A}$ is pairwise disjoint so that,

$$
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

by M2 and

$$
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)+0+0+\ldots=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

by M1

Monotonicity

Given that $A \subset B$, we can write $B=A \cup B \backslash A$. Then, by previous part, $\mu(B)=\mu(A \cup B \backslash A)=\mu(A)+\mu(B \backslash A)$. Since $B \backslash A \in \mathfrak{A}$ by S2, $\mu(B \backslash A) \geq 0$. Thus, $\mu(A) \leq \mu(B)$

Complementation
Proceeding as above, we have $\mu(B)=\mu(A)+\mu(B \backslash A)$ but now we can subtract the real number $\mu(A)$ on both sides as we have $\mu(A)<\infty$.

Subadditivity

Let $B_{1}=A_{1}$ and

$$
B_{n}=A_{n} \backslash \bigcup_{i=1}^{n-1} A_{i}
$$

Then, the family $\left\{B_{i}: i \in \mathbb{N}\right\}$ is pairwise disjoint: assume that $i<j$ (the argument for $i>j$ is similar). Then,

$$
\begin{aligned}
B_{i} \cap B_{j} & =\left(A_{i} \backslash \bigcup_{k=1}^{i-1} A_{k}\right) \cap\left(A_{j} \backslash \bigcup_{m=1}^{j-1} A_{m}\right) \\
& =A_{i} \cap \bigcap_{k=1}^{i-1} A_{k}^{c} \cap A_{j} \cap \bigcap_{m=1}^{j-1} A_{m}^{c}=\varnothing
\end{aligned}
$$

since $A_{i} \cap A_{m_{0}}^{c}=\varnothing$ for some m_{0} with $1 \leq m_{0}=i<j$ (and, obviously, $\left.A_{i} \cap A_{i}^{c}=\varnothing\right)$. Thus,

$$
\mu\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} \mu\left(B_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

since $B_{i} \subset A_{i}$ for each i. We will be done if we can prove that

$$
\bigcup_{i=1}^{\infty} B_{i}=\bigcup_{i=1}^{\infty} A_{i}
$$

Since $B_{i} \subset A_{i}$ for each i, we must have

$$
\bigcup_{i=1}^{\infty} B_{i} \subset \bigcup_{i=1}^{\infty} A_{i}
$$

For the converse, let

$$
x \in \bigcup_{i=1}^{\infty} A_{i}
$$

Define $I=\left\{j: x \in A_{j}\right\} \subset \mathbb{N}$. By the well-ordering principle, I has a least element, say m. Then,

$$
x \in B_{m}=A_{m} \backslash \bigcup_{i=1}^{m-1} A_{i}
$$

so that both inclusions hold.
The following properties mimic continuity properties.
Theorem 4 Let $\left\{A_{i}: i \in \mathbb{N}\right\}$ be a family of measurable sets. If this family is increasing and nested, that is, we have a sequence of sets $A_{1} \subset A_{2} \subset \ldots$, then

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

In this case, μ is said to be continuous from below. On the other hand, if we have a nested decreasing sequence $A_{1} \supset A_{2} \supset \ldots$ and $\mu\left(A_{1}\right)<\infty$, then

$$
\mu\left(\bigcap_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

In this case, μ is said to be continuous from above.
Proof. For first part, let $E_{1}=A_{1}$ and $E_{n}=A_{n} \backslash A_{n-1}$. This family is measurable by $\mathbf{S 2}$ and disjoint: WLOG assume that $i<j$. Then, $E_{i} \cap E_{j}=$ $A_{i} \cap A_{i-1}^{c} \cap A_{j} \cap A_{j-1}^{c}$
$=A_{i} \cap A_{j} \cap\left(A_{i-1} \cup A_{j-1}\right)^{c}$
$=A_{i} \cap A_{j-1}^{c}=\varnothing$ because $i \leq j-1$
Moreover,

$$
\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} E_{i}
$$

One side of the inclusion is obtained by observing that $E_{i} \subset A_{i}$ for each i, which gives us

$$
\bigcup_{i=1}^{\infty} A_{i} \supset \bigcup_{i=1}^{\infty} E_{i}
$$

For the reverse inclusion, let

$$
x \in \bigcup_{i=1}^{\infty} A_{i}
$$

Define $I=\left\{j: x \in A_{j}\right\} \subset \mathbb{N}$. By the well-ordering principle, I has a least element, say m. Then, $x \in E_{m}=A_{m} \backslash A_{m-1}$ with $A_{0}:=\varnothing$, so that

$$
x \in \bigcup_{i=1}^{\infty} E_{i}
$$

Then,

$$
\begin{aligned}
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) & =\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mu\left(E_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mu\left(A_{i} \backslash A_{i-1}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\mu\left(A_{i}\right)-\mu\left(A_{i-1}\right)\right)
\end{aligned}
$$

The last step is possible if we assume that $\mu\left(A_{i}\right)<\infty$ for each i, otherwise we would have $\infty=\infty$, so that equality still holds and the proof withstands scrutiny. Thus,

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)-\mu\left(A_{0}\right)
$$

Since we've assumed that $A_{0}=\varnothing$, we have $\mu\left(A_{0}\right)=\varnothing$ and we're done.
For the second part, let $B_{1}=\varnothing, B_{2}=A_{1} \backslash A_{2}, B_{3}=A_{1} \backslash A_{3}, \ldots$. Then, B_{i} is an increasing sequence of sets: $B_{i}=A_{1} \backslash A_{i}$ and $B_{i+1}=A_{1} \backslash A_{i+1}$. Since $A_{i+1} \subset A_{i}$, we have $A_{1} \backslash A_{i} \subset A_{1} \backslash A_{i+1}$, or that $B_{i} \subset B_{i+1}$. Thus,

$$
\begin{equation*}
\mu\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\lim _{n \rightarrow \infty}\left(\mu\left(A_{1}\right)-\mu\left(A_{n}\right)\right) \tag{1}
\end{equation*}
$$

To finish the proof, we first show that

$$
\bigcup_{i=1}^{\infty} B_{i}=A_{1} \backslash \bigcap_{i=1}^{\infty} A_{i}
$$

To see this, note that $B_{1}=A_{1} \backslash A_{1}=\varnothing . B_{2}=B_{1} \cup B_{2}=A_{1} \backslash A_{2}=A_{1} \backslash\left(A_{1} \cap A_{2}\right)$. This takes care of the base step for induction. Now, let

$$
\bigcup_{i=1}^{k} B_{i}=A_{1} \backslash \bigcap_{i=1}^{k} A_{i}
$$

Then,

$$
\begin{aligned}
\bigcup_{i=1}^{k+1} B_{i} & =B_{k+1}=A_{1} \backslash A_{k+1} \\
& =A_{1} \backslash \bigcap_{i=1}^{k+1} A_{i}
\end{aligned}
$$

We can therefore have

$$
\begin{equation*}
\mu\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\mu\left(A_{1}\right)-\mu\left(\bigcap_{i=1}^{\infty} A_{i}\right) \tag{2}
\end{equation*}
$$

Equating (1) and (2), we get

$$
\mu\left(A_{1}\right)-\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu\left(A_{1}\right)-\mu\left(\bigcap_{i=1}^{\infty} A_{i}\right)
$$

Since $\mu\left(A_{1}\right)<\infty$, then we can cancel this real number from both sides to get

$$
\mu\left(\bigcap_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

The converse also holds under different assumptions:

Problem 5 Let X be a non-empty set and let (X, \mathfrak{A}) be a σ-algebra. Let μ : $\mathfrak{A} \longrightarrow[0, \infty]$ be finitely additive and, for every nested increasing sequence $A_{1} \subset$ $A_{2} \subset \ldots$ in \mathfrak{A},

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Then, μ is a measure.
Solution 6 M1 Let $A \in \mathfrak{A}$ such that $\mu(A)<\infty$. Then, $\mu(A \cup \varnothing)=\mu(A)=$ $\mu(A)+\mu(\varnothing)$ since A and \varnothing are disjoint, so that $\mu(\varnothing)=0$.

M2 Let $\left\{B_{i}: i \in \mathbb{N}\right\}$ be a sequence of disjoint sets. We need to show that

$$
\mu\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} \mu\left(B_{i}\right)
$$

Define

$$
A_{n}=\bigcup_{i=1}^{n} B_{i}
$$

with $A_{1}=B_{1}$. Then,

$$
A_{n}=\bigcup_{i=1}^{n} B_{i} \subset \bigcup_{i=1}^{n+1} B_{i}=A_{n+1}
$$

gives us a family $\left\{A_{i}: i \in \mathbb{N}\right\}$ of an increasing sequence in \mathfrak{A} so that

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{i=1}^{n} B_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mu\left(B_{i}\right)
$$

by finite additivity of μ so that

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(B_{i}\right)
$$

It remains to show that

$$
\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} B_{i}
$$

Let

$$
x \in \bigcup_{i=1}^{\infty} A_{i}
$$

Then, $\exists j$ such that

$$
x \in A_{j}=\bigcup_{i=1}^{j} B_{i} \Longrightarrow x \in \bigcup_{i=1}^{\infty} B_{i}
$$

Thus,

$$
\bigcup_{i=1}^{\infty} A_{i} \subset \bigcup_{i=1}^{\infty} B_{i}
$$

Conversely, since $B_{i} \subset A_{i}$ for each i, it follows that

$$
\bigcup_{i=1}^{\infty} B_{i} \subset \bigcup_{i=1}^{\infty} A_{i}
$$

and, therefore

$$
\mu\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(B_{i}\right)
$$

Problem 7 Let X be a non-empty set and let (X, \mathfrak{A}) be a σ-algebra. Let $\mu: \mathfrak{A} \longrightarrow[0, \infty]$ be finitely additive. Then, μ is a measure if for every nested decreasing sequence $A_{1} \supset A_{2} \supset \ldots$ in \mathfrak{A} with $\mu\left(A_{1}\right)<\infty$,

$$
\mu\left(\bigcap_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Solution 8 Let $\left\{B_{i}: i \in \mathbb{N}\right\}$ be family of disjoint sets. Let

$$
A_{n}=\bigcup_{i=1}^{n} B_{i}
$$

Then, $A_{n} \subset A_{n+1}$ so that we have a nested decreasing sequence $A_{n+1}^{c} \subset A_{n}^{c}$. Let us first show that

$$
\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} B_{i}
$$

To this end, we first note that

$$
\forall x \in \bigcup_{i=1}^{\infty} A_{i}, \exists j \text { such that } x \in A_{j}=\bigcup_{i=1}^{j} B_{i} \subset \bigcup_{i=1}^{\infty} B_{i}
$$

Conversely,

$$
x \in \bigcup_{i=1}^{\infty} B_{i} \Longrightarrow x \in B_{j} \text { for some } j \text { and } B_{j} \subset \bigcup_{i=1}^{j} B_{i}=A_{j} \subset \bigcup_{i=1}^{\infty} A_{i}
$$

It follows that

$$
\bigcap_{i=1}^{\infty} A_{i}^{c}=\bigcap_{i=1}^{\infty} B_{i}^{c} \Longrightarrow \mu\left(\bigcap_{i=1}^{\infty} B_{i}^{c}\right)=\mu\left(\bigcap_{i=1}^{\infty} A_{i}^{c}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}^{c}\right)
$$

Since μ is finitely additive, we must have $\mu(X)=\mu\left(C \cup C^{c}\right)=\mu(C)+\mu\left(C^{c}\right)$. That is, $\mu(C)=\mu(X)-\mu\left(C^{c}\right)$. Of course we can only say this, provided that
$\mu\left(C^{c}\right)<\infty$, which we will take the liberty of assuming (in the other case, the equality still holds). Moreover, we can denote

$$
\bigcap_{i=1}^{\infty} A_{i}^{c}=A^{c}
$$

Then,
$\mu(A)=\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\mu(X)-\mu\left(A^{c}\right)=\mu(X)-\mu\left(\bigcap_{i=1}^{\infty} A_{i}^{c}\right)=\mu(X)-\lim _{n \rightarrow \infty} \mu\left(A_{n}^{c}\right)$
That is,
$\mu\left(\left(\bigcup_{i=1}^{\infty} A_{i}\right)^{c}\right)=\mu\left(\left(\bigcup_{i=1}^{\infty} B_{i}\right)^{c}\right)=\mu(X)-\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(X)-\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mu\left(B_{i}\right)$
Thus,

$$
\mu\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mu\left(B_{i}\right)
$$

Definition 9 We say that a property holds almost everywhere or for almost all $x \in X$ if the measure of the set for which the property does not hold is zero.

Lemma 10 (Borel-Cantelli) If we have a family of measurable sets $\left\{E_{i}: i \in \mathbb{N}\right\}$ and their union has finite measure, i.e.,

$$
\sum_{i=1}^{\infty} \mu\left(E_{i}\right)<\infty
$$

then almost every $x \in X$ belongs to at most finitely many $E_{j}^{\prime} s$.
Proof. We need to show that the set $F=\left\{x \in X: x\right.$ belongs to infinitely many E_{j} 's $\}$ is measurable and has zero measure. Let $x \in F$. Then, for every $N \in \mathbb{N}$,

$$
x \in \bigcup_{n=N}^{\infty} E_{n}
$$

Since this is true for every N, then

$$
x \in \bigcap_{N=1 n=N}^{\infty} \bigcup_{n}^{\infty} E_{n}
$$

Conversely,

$$
x \in \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_{n} \Longrightarrow x \in F
$$

Thus,

$$
F=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_{n}
$$

so that F is measurable. Now, note that

$$
\bigcup_{n=1}^{\infty} E_{n} \supset \bigcup_{n=2}^{\infty} E_{n} \supset \bigcup_{n=3}^{\infty} E_{n} \ldots
$$

Then, by continuity from above, we have that

$$
\mu(F)=\mu\left(\bigcap_{N=1}^{\infty} \bigcup_{i=N}^{\infty} E_{i}\right)=\lim _{N \rightarrow \infty} \mu\left(\bigcup_{i=N}^{\infty} E_{i}\right) \leq \lim _{N \rightarrow \infty} \sum_{i=N}^{\infty} \mu\left(E_{i}\right)=0
$$

because the union of $\left\{E_{i}: i \in \mathbb{N}\right\}$ has finite measure.

1.2 Completion of Measure

Let (X, \mathfrak{A}, μ) be a measure space and let

$$
\mathfrak{M}=\{E \subset X: E=A \cup B \text { s.t. } A \in \mathfrak{A} \wedge B \subset C: \mu(C)=0\}
$$

That is, we add sets to a collection with measure zero. Then, \mathfrak{M} is a σ-algebra. Proof. We need to show that (a) $X \in \mathfrak{M}$, (b) if $E, F \in \mathfrak{M}$, then $E \backslash F \in \mathfrak{M}$ and (c) \mathfrak{M} is closed under countable unions
(a) Note that for each $A \in \mathfrak{A}, A=A \cup \varnothing$ and $\varnothing \subset \varnothing$ and $\mu(\varnothing)=0$, so that $A \in \mathfrak{M}$. Thus, $\mathfrak{A} \subset \mathfrak{M}$ so that $X, \varnothing \in \mathfrak{M}$.
(b) We will first show that for any $E \in \mathfrak{M}, E^{c} \in \mathfrak{M}$ and then show that \mathfrak{M} is closed under intersection. These two facts together will show that for any E, F in $\mathfrak{M}, E \backslash F=E \cap F^{c} \in \mathfrak{M}$.

Let $E \in \mathfrak{M}$ where $E=A \cup B$ with $A \in \mathfrak{A}$ and $B \subset C$ such that $\mu(C)=0$. Note that $C \subset B$ implies $C^{c} \subset B^{c}$ so that $C^{c} \cup B^{c}=B^{c}$ and that
$B^{c}=X \cap B^{c}=\left(C^{c} \cup C\right) \cap\left(C^{c} \cup B^{c}\right)=C^{c} \cup\left(C \cap B^{c}\right)$.
Then, $E^{c}=A^{c} \cap B^{c}=A^{c} \cap\left(C^{c} \cup\left(C \cap B^{c}\right)\right)$
$=\left(A^{c} \cap C^{c}\right) \cup\left(A^{c} \cap C \cap B^{c}\right)$
Now, since $A, C \in \mathfrak{A}$, then $A^{c}, C^{c} \in \mathfrak{A}$ and so $A^{c} \cap C^{c} \in \mathfrak{A}$. Also, by definition, $A^{c} \cap C \cap B^{c} \subset C$ and by assumption $\mu(C)=0$ so that $\left(A^{c} \cap C^{c}\right) \cup$ $\left(A^{c} \cap C \cap B^{c}\right)=E^{c} \in \mathfrak{M}$.

Next, let Let $E, F \in \mathfrak{M}$. Then, $\exists A_{1}, A_{2}, C_{1}, C_{2} \in \mathfrak{A}$ such that $E=A_{1} \cup B_{1}$, $F=A_{2} \cup B_{2}$ and $B_{i} \subset C_{i}$ such that $\mu\left(C_{i}\right)=0$ for $i=1,2$. Then, $E \cap F=$ $\left(A_{1} \cup B_{1}\right) \cap\left(A_{2} \cup B_{2}\right)$
$=\left(A_{1} \cap\left(A_{2} \cup B_{2}\right)\right) \cup\left(B_{1} \cap\left(A_{2} \cup B_{2}\right)\right)$
$=\left(A_{1} \cap A_{2}\right) \cup\left(A_{1} \cap B_{2}\right) \cup\left(B_{1} \cap A_{2}\right) \cup\left(B_{1} \cap B_{2}\right)$
Now, $A_{1} \cap A_{2} \in \mathfrak{A}$ and $A_{1} \cap B_{2} \subset B_{2} \subset C_{2}, B_{1} \cap A_{2} \subset B_{1} \subset C_{1}$ and $B_{1} \cap B_{2}$ is a subset of C_{1} (and C_{2}). Thus, $\left(A_{1} \cap B_{2}\right) \cup\left(B_{1} \cap A_{2}\right) \cup\left(B_{1} \cap B_{2}\right) \subset C_{1} \cup C_{2}$. Note that $\mu\left(C_{1} \cup C_{2}\right) \leq \mu\left(C_{1}\right)+\mu\left(C_{2}\right)=0+0=0$ so that $\mu\left(C_{1} \cup C_{2}\right)=0$ since $\mu(A) \geq 0$ for all $A \in \mathfrak{A}$. Thus, $E \cap F \in \mathfrak{M}$.

We can now assert that for any $E, F \in \mathfrak{M}, E \backslash F=E \cap F^{c} \in \mathfrak{M}$.
(c) Assume that $\left\{E_{i}: i \in \mathbb{N}\right\} \subset \mathfrak{M}$ is a family of disjoint sets, where, for each $i, E_{i}=A_{i} \cup B_{i}$ where $A_{i} \in \mathfrak{A}$ and $B_{i} \subset C_{i}$ such that $\mu\left(C_{i}\right)=0$. Then,

$$
\bigcup_{i=1}^{\infty} E_{i}=\bigcup_{i=1}^{\infty}\left(A_{i} \cup B_{i}\right)=\bigcup_{i=1}^{\infty} A_{i} \cup \bigcup_{i=1}^{\infty} B_{i}
$$

Again,

$$
\bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A} \text { and } \bigcup_{i=1}^{\infty} B_{i} \subset \bigcup_{i=1}^{\infty} C_{i}
$$

and that

$$
\mu\left(\bigcup_{i=1}^{\infty} C_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(C_{i}\right)=0 \Longrightarrow \mu\left(\bigcup_{i=1}^{\infty} C_{i}\right)=0 \Longrightarrow \bigcup_{i=1}^{\infty} E_{i} \in \mathfrak{M}
$$

furnishing a proof of the third claim.
For such E, define $\bar{\mu}: \mathfrak{M} \longrightarrow[0, \infty]$ by $\bar{\mu}(E)=\mu(A)$. This is a well-defined measure on \mathfrak{M}.
Proof. To show that $\bar{\mu}$ is well defined, assume that $E_{1}=A_{1} \cup B_{1}$ and $E_{2}=$ $A_{2} \cup B_{2}$ with $B_{1} \subset C_{1}, B_{2} \subset C_{2}$ and $\mu\left(C_{i}\right)=0$ for $i=1,2$. We need to show that $E_{1}=E_{2} \Longrightarrow \bar{\mu}\left(E_{1}\right)=\bar{\mu}\left(E_{2}\right)$. Now, $E_{1}=E_{2}$

$$
\begin{aligned}
& \Longrightarrow A_{1} \cup B_{1}=A_{2} \cup B_{2} \\
& \Longrightarrow A_{1} \cup B_{1} \cup C_{1} \cup C_{2}=A_{2} \cup B_{2} \cup C_{1} \cup C_{2} \\
& \Longrightarrow A_{1} \cup C_{1} \cup C_{2}=A_{2} \cup C_{1} \cup C_{2} \text { since } B_{i} \subset C_{i} \text { for } i=1,2 .
\end{aligned}
$$

Now, since μ is measure on $\mathfrak{A}, A_{1} \cup C_{1} \cup C_{2}=A_{2} \cup C_{1} \cup C_{2} \in \mathfrak{A}, A_{i} \in \mathfrak{A}$ and $A_{1} \subset A_{1} \cup C_{1} \cup C_{2}$, then $\mu\left(A_{1}\right) \leq \mu\left(A_{1} \cup C_{1} \cup C_{2}\right)=\mu\left(A_{2} \cup C_{1} \cup C_{2}\right) \leq$ $\mu\left(A_{2}\right)+\mu\left(C_{1}\right)+\mu\left(C_{2}\right)=\mu\left(A_{2}\right)+0+0=\mu\left(A_{2}\right)$.

Similarly, $\mu\left(A_{2}\right) \leq \mu\left(A_{2} \cup C_{1} \cup C_{2}\right)=\mu\left(A_{1} \cup C_{1} \cup C_{2}\right) \leq \mu\left(A_{1}\right)$. Thus, $\mu\left(A_{1}\right)=\mu\left(A_{2}\right)$, which means that $\bar{\mu}\left(E_{1}\right)=\bar{\mu}\left(E_{2}\right)$

We now show that $\bar{\mu}$ is a measure.
M1 Since $\mathfrak{A} \subset \mathfrak{M}$ by (a) above, then $\left.\bar{\mu}\right|_{\mathfrak{A}}=\mu$, by definition. Thus, $\bar{\mu}(\varnothing)=$ $\mu(\varnothing)=0$.

M2 Let $\left\{E_{i}: i \in \mathbb{N}\right\} \subset \mathfrak{M}$, where $E_{i}=A_{i} \cup B_{i}$ for each i, be a pairwise disjoint family of \mathfrak{M}-measurable subsets. Then,

$$
\bar{\mu}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)=\sum_{i=1}^{\infty} \bar{\mu}\left(E_{i}\right)
$$

making $\bar{\mu}$ a bona fide measure.
Problem 11 Let (X, \mathfrak{A}, μ) be a measure space, $E \in \mathfrak{A}$ and $\mu(E)>0$. Define $\mathfrak{A}_{E}:=\{A \subset E: A \in \mathfrak{A}\}$. Show that that \mathfrak{A}_{E} is a σ-algebra on E and the restriction of μ to E is a measure.

Solution 12 Since $E \subset E, E \in \mathfrak{A}_{E}$. Let $A, B \in \mathfrak{A}_{E}$. Then, $A \subset E$ and $A, B \in \mathfrak{A}$ (so $A \backslash B \in \mathfrak{A})$. Since $A \backslash B \subset A \subset E$, we have that $A \backslash B \subset E$. Thus, $A \backslash B \in \mathfrak{A}_{E}$. Finally, let $\left\{E_{i}: i \in \mathbb{N}\right\} \subset \mathfrak{A}_{E}$. Then, for each $i, E_{i} \subset E$ and $\left\{E_{i}: i \in \mathbb{N}\right\} \subset \mathfrak{A}$. These two facts imply that

$$
\bigcup_{i=1}^{\infty} E_{i} \subset E
$$

by properties of sets and, respectively,

$$
\bigcup_{i=1}^{\infty} E_{i} \in \mathfrak{A}
$$

since \mathfrak{A} is a σ-algebra. Thus

$$
\bigcup_{i=1}^{\infty} E_{i} \in \mathfrak{A}_{E}
$$

and \mathfrak{A}_{E} is a σ-algebra. Let $\left.\mu\right|_{E}=\nu$. Then, $\nu(\varnothing)=\left.\mu\right|_{E}(\varnothing)=0=\mu(\varnothing)=0$ since $\varnothing \in \mathfrak{A}$. Now, let $\left\{E_{i}: i \in \mathbb{N}\right\} \subset \mathfrak{A}_{E}$ be pairwise disjoint. Then,

$$
\bigcup_{i=1}^{\infty} E_{i} \in \mathfrak{A}_{E} \subset \mathfrak{A}
$$

so that

$$
\begin{aligned}
\nu\left(\bigcup_{i=1}^{\infty} E_{i}\right) & =\left.\mu\right|_{E}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)= \\
& =\sum_{i=1}^{\infty} \mu\left(E_{i}\right)=\left.\sum_{i=1}^{\infty} \mu\right|_{E}\left(E_{i}\right)=\sum_{i=1}^{\infty} \nu\left(E_{i}\right)
\end{aligned}
$$

1.3 Construction of Measures

There is a canonical way to build measures. For that, we need a little machinery.
Definition 13 Let $S \subset 2^{X}$ and $\mu: S \longrightarrow[0, \infty]$ be a function. μ is said to be countably monotone if for every $E \in S$, and for every $\left\{E_{i}: i \in \mathbb{N}\right\} \subset S$, we have

$$
E \subset \bigcup_{i=1}^{\infty} E_{i} \Longrightarrow \mu(E) \leq \sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

Definition 14 Let $S \subset 2^{X}$ and $\mu: S \longrightarrow[0, \infty]$ be a function. μ is said to be countably subadditive if for every $\left\{A_{i}: i \in \mathbb{N}\right\} \subset S$,

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

Definition 15 Let $S \subset 2^{X}$ and $\mu: S \longrightarrow[0, \infty]$ be a function. μ is said to be a pre-measure if

P1 $\mu(\varnothing)=0$;
P2 μ is finitely additive; and
P3 μ is countably monotone
Definition 16 An outer measure, $\mu^{*}: 2^{X} \longrightarrow[0, \infty]$, is a function definable on every subset of a non-empty set X such that
$O 1 \mu^{*}(\varnothing)=0$
O2 μ^{*} is countably monotone.
Lemma $17 \mu^{*}$ is countably subadditive and, therefore, finitely subadditive.
Proof. Let $\left\{A_{i}: i \in \mathbb{N}\right\} \subset 2^{X}$. Then,

$$
A=\bigcup_{i=1}^{\infty} A_{i} \Longrightarrow A \subset \bigcup_{i=1}^{\infty} A_{i}
$$

so that

$$
\mu(A)=\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

Example 18 The trivial measure $\mu^{*}(A)=0 \forall A$. The counting measure is clearly another example.

Here is another interesting example.
Lemma 19 Let $S \subset 2^{X}$ and let $\mu: S \longrightarrow[0, \infty]$ be a function (we do not even need μ to be a pre-measure!). Define $\mu^{*}: 2^{X} \longrightarrow[0, \infty]$ by $\mu^{*}(\varnothing)=0$ and

$$
\mu^{*}(E)=\inf \left\{\sum_{i=1}^{\infty} \mu\left(E_{i}\right): E \subset \bigcup_{i=1}^{\infty} E_{i} \wedge E_{i} \in S \forall i\right\}
$$

Then, μ^{*} is an outer measure.
Proof. We already have $\mu^{*}(\varnothing)=0$ so that O1 is trivially satisfied. Thus, to prove that μ^{*} is an outer measure, we only need to prove $\mathbf{O 2}$ - countable monotonicity from covering of E by $\left\{E_{i}: i \in \mathbb{N}\right\}$:

$$
E \subset \bigcup_{i=1}^{\infty} E_{i} \Longrightarrow \mu^{*}(E) \leq \sum_{i=1}^{\infty} \mu^{*}\left(E_{i}\right)
$$

If for some $i, \mu^{*}\left(E_{i}\right)=\infty$, we are done. Assume $\mu^{*}\left(E_{i}\right)<\infty$ for all i. Let $\epsilon>0$. For every i, by properties of infimum, we can cover E_{i} by a family $\left\{E_{i}^{k}: k \in \mathbb{N}\right\} \subset S$ such that

$$
\mu^{*}\left(E_{i}\right) \geq \sum_{k=1}^{\infty} \mu\left(E_{i}^{k}\right)-\frac{\epsilon}{2^{i}} \Longrightarrow E \subset \bigcup_{i=1}^{\infty} E_{i} \subset \bigcup_{k, i=1}^{\infty} E_{i}^{k}
$$

That is, E is covered by $\left\{E_{i}^{k}: k \in \mathbb{N}\right\}$, a countable cover. By definition of μ^{*},

$$
\mu^{*}(E)=\inf _{E_{k}} \sum_{i, k=1}^{\infty} \mu\left(E_{i}^{k}\right) \leq \sum_{i, k=1}^{\infty} \mu\left(E_{i}^{k}\right)
$$

Since all the terms of the infinite sum are positive, we can re-arrange the terms to get

$$
\sum_{i, k=1}^{\infty} \mu\left(E_{i}^{k}\right)=\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \mu\left(E_{i}^{k}\right) \leq \sum_{i=1}^{\infty}\left(\mu^{*}\left(E_{i}\right)+\frac{\epsilon}{2^{j}}\right)=\sum_{i=1}^{\infty} \mu^{*}\left(E_{i}\right)+\epsilon
$$

Now, we can pass the limit to ϵ to get

$$
\mu^{*}(E) \leq \sum_{i=1}^{\infty} \mu^{*}\left(E_{i}\right)
$$

The idea over here is to take a covering and bring it down to a different family within S.

Notice that the definition of the outer measure does not assume that the domain is a σ-algebra. With slight modifications, however, a subdomain of μ^{*} forms a σ-algebra: let us first call a set $E \subset X$ measurable with respect to μ^{*} if, for any $A \subset X$, we have $\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)$. Note that $\mu^{*}(A) \leq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)$ is always true because $A=A \cap X=$ $A \cap\left(E \cup E^{c}\right)=(A \cap E) \cup\left(A \cap E^{c}\right)$ and because μ^{*} is finitely subadditive.

Proposition 20 Let $E \subset X$. If $\mu^{*}(E)=0$, then E is measurable with respect to μ^{*}

Proof. Let $A \subset X$. Since $\mu^{*}(A \cap E) \leq \mu^{*}(E)$, we must have $\mu^{*}(A \cap E)=0$. Again, by monotonicity, $\mu^{*}(A) \geq \mu^{*}\left(A \cap E^{c}\right)=\mu^{*}\left(A \cap E^{c}\right)+\mu^{*}(A \cap E)$.

Such a set, which we will call \mathfrak{M}, of μ^{*}-measurable sets form a σ-algebra. The proof of this fact is broken into a bunch of lemmas. First, note that $\mu^{*}(A)=$ $\mu^{*}(A \cap \varnothing)+\mu^{*}\left(A \cap \varnothing^{c}\right)$ so that $\mu^{*}(\varnothing)=0$ so that \varnothing is measurable with respect to μ^{*} and hence $\varnothing \in \mathfrak{M}$. Also note that if E is measurable with respect to μ^{*}, then E^{c} is measurable with respect to μ^{*}, by simple commutativity of the real numbers under addition.

Lemma 21 If E_{1} and E_{2} are measurable with respect to μ^{*}, then $E_{1} \cup E_{2}$ is measurable.

Proof. If E_{1} is measurable, then for any $A, \mu^{*}(A)=\mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{1}^{c}\right)$. Also, again, since E_{2} is measurable, then letting $B=A \cap E_{1}^{c}$, we have, for all B, $\mu^{*}(B)=\mu^{*}\left(B \cap E_{2}\right)+\mu^{*}\left(B \cap E_{2}^{c}\right)$. Thus, $\mu^{*}(A)=\mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{1}^{c}\right)$ $=\mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{1}^{c} \cap E_{2}\right)+\mu^{*}\left(A \cap E_{1}^{c} \cap E_{2}^{c}\right)$
$=\mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{1}^{c} \cap E_{2}\right)+\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right)$
If A, E_{1} and E_{2} have a non-trivial intersection, then $A \cap\left(E_{1} \cup E_{2}\right)=A \cap$ $X \cap\left(E_{1} \cup E_{2}\right)=A \cap\left(E_{1} \cup E_{1}^{c}\right) \cap\left(E_{1} \cup E_{2}\right)$
$=\left(A \cap E_{1}\right) \cup\left(A \cap E_{1}^{c}\right) \cap\left(E_{1} \cup E_{2}\right)$
$=\left(A \cap E_{1}\right) \cup\left(A \cap E_{1}^{c} \cap E_{1}\right) \cup\left(A \cap E_{1}^{c} \cap E_{2}\right)$
$=\left(A \cap E_{1}\right) \cup\left(A \cap E_{1}^{c} \cap E_{2}\right)$ so that $\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right) \leq \mu^{*}\left(A \cap E_{1}\right)+$ $\mu^{*}\left(A \cap E_{1}^{c} \cap E_{2}\right)$ by finite subadditivity, with equality if E_{1} and E_{2} cover A. Thus, $\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right)$
$\leq \mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{1}^{c} \cap E_{2}\right)+\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right)$
$=\mu^{*}(A)$
Thus, $\mu^{*}(A)=\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right)$.
Lemma 22 If E_{1} and E_{2} are measurable with respect to μ^{*}, then $E_{1} \backslash E_{2}$ is measurable with respect to μ^{*}.

Proof. We've already proved that for $E_{1}, E_{2} \in \mathfrak{M}, E_{1} \cup E_{2} \in \mathfrak{M}$ and that $E_{1}^{c}, E_{2}^{c} \in \mathfrak{M}$. Since $E_{1} \backslash E_{2}=E_{1} \cap E_{2}^{c}=\left(E_{1}^{c} \cup E_{2}\right)^{c}$, we have that $E_{1} \backslash E_{2} \in \mathfrak{M}$

Lemma 23 If E_{1} and E_{2} are measurable with respect to μ^{*} and disjoint, then, for every $A, \mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)=\mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{2}\right)$

Proof. Since E_{2} is measurable, we have $\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)=\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right) \cap E_{2}\right)+$ $\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right) \cap E_{2}^{c}\right)$
$=\mu^{*}\left(A \cap\left(\left(E_{1} \cap E_{2}\right) \cup\left(E_{2} \cap E_{2}\right)\right)\right)+\mu^{*}\left(A \cap\left(\left(E_{1} \cap E_{2}^{c}\right) \cup\left(E_{2} \cap E_{2}^{c}\right)\right)\right)$
Since $E_{1} \cap E_{2}=\varnothing$, we have $\mu^{*}\left(A \cap\left(\varnothing \cup E_{2}\right)\right)+\mu^{*}\left(A \cap\left(\left(E_{1} \cap E_{2}^{c}\right) \cup \varnothing\right)\right)$
$=\mu^{*}\left(A \cap E_{2}\right)+\mu^{*}\left(A \cap\left(E_{1} \cap E_{2}^{c}\right)\right)$
Again, since $E_{1} \cap E_{2}=\varnothing$, we must have that $E_{1} \subset E_{2}^{c}$. Thus, $E_{1} \cap E_{2}^{c}=E_{1}$ so that $\mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)=\mu^{*}\left(A \cap E_{2}\right)+\mu^{*}\left(A \cap E_{1}\right)$
By induction, the above holds for n sets.
Lemma 24 If $\left\{E_{i}: i \in \mathbb{N}\right\}$ are measurable with respect to μ^{*}, then so is their union.

Proof. Let

$$
\widetilde{E}_{k}=E_{k} \backslash \bigcup_{i=1}^{k-1} E_{i} \text { and } F_{n}=\bigcup_{i=1}^{n} \widetilde{E}_{i}=\bigcup_{i=1}^{n} E_{i}
$$

F_{n} is measurable because finite unions are measurable. Now set

$$
E=\bigcup_{i=1}^{\infty} E_{i}
$$

We need to prove that $\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)$ i.e., E is μ^{*}-measurable. We know that $F_{n} \subset E$ for any n so that $E^{c} \subset F_{n}^{c}$. Therefore,

$$
\begin{aligned}
\mu^{*}(A) & =\mu^{*}\left(A \cap F_{n}\right)+\mu^{*}\left(A \cap F_{n}^{c}\right) \\
& \geq \mu^{*}\left(A \cap F_{n}\right)+\mu^{*}\left(A \cap E^{c}\right) \\
& =\mu^{*}\left(A \cap\left(\bigcup_{i=1}^{n} \widetilde{E}_{i}\right)\right)+\mu^{*}\left(A \cap E^{c}\right)
\end{aligned}
$$

Since \widetilde{E}_{i} 's are disjoint, we then have, by Lemma 23,

$$
=\sum_{i=1}^{n} \mu^{*}\left(A \cap \widetilde{E}_{i}\right)+\mu^{*}\left(A \cap E^{c}\right)
$$

Now, we also know that

$$
\bigcup_{i=1}^{\infty} \widetilde{E}_{i}=\bigcup_{i=1}^{\infty} E_{i}=E \Longrightarrow A \cap E=\bigcup_{i=1}^{\infty}\left(A \cap \widetilde{E}_{i}\right)
$$

so that, by countable subadditivity, we have

$$
\mu^{*}(A \cap E) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A \cap \widetilde{E}_{i}\right) \Longrightarrow \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A \cap \widetilde{E}_{i}\right)+\mu^{*}\left(A \cap E^{c}\right)
$$

Thus,

$$
\begin{aligned}
\mu^{*}(A) & \geq \mu^{*}\left(A \cap\left(\bigcup_{i=1}^{n} E_{i}\right)\right)+\mu^{*}\left(A \cap E^{c}\right) \\
& =\sum_{i=1}^{n} \mu^{*}\left(A \cap E_{i}\right)+\mu^{*}\left(A \cap E^{c}\right) \\
& \geq \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
\end{aligned}
$$

The other inequality holds trivially.
Thus, the collection of all measurable sets \mathfrak{M} under μ^{*} forms a σ-algebra. It can now be shown that $\bar{\mu}=\left.\mu^{*}\right|_{\mathfrak{M}}$ forms a (complete) measure on \mathfrak{M}. For this to be valid, we need to prove that a family of pairwise disjoint sets $\left\{E_{i}: i \in \mathbb{N}\right\}$,

$$
\bar{\mu}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \bar{\mu}\left(E_{i}\right)
$$

One inequality of this holds always because of countably monotone property.
For the other side, by Lemma 23, for a (finite) family of pairwise disjoint sets $\left\{E_{i}\right\}$, for any A,

$$
\mu^{*}\left(A \cap \bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} \mu^{*}\left(A \cap E_{i}\right)
$$

Substituting $A=X$, we have

$$
\mu^{*}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{n} \mu^{*}\left(E_{i}\right)
$$

so that we can replace n with ∞, which is what is needed. Thus, $\bar{\mu}$ is a measure.
To prove that $\bar{\mu}$ is complete (given a measurable subset E of measure zero and a subset F of E, the measure of F is zero), note that $\mu^{*}(E)=0$, so that $\mu^{*}(F)=0$ by countable monotonicity. For a fixed $A \subset X, \mu^{*}(A \cap F)=0$ and $\mu^{*}\left(A \cap F^{c}\right) \leq \mu^{*}(A)$ so that $\mu^{*}(A) \geq \mu^{*}\left(A \cap F^{c}\right)+\mu^{*}(A \cap F)$. Thus, F is measurable with respect to μ^{*}

To summarise, we have a function μ defined on S. From this, we constructed and outer measure μ^{*} over 2^{X} and from this, we constructed $\bar{\mu}$ defined on \mathfrak{M}.

Do μ^{*} and μ always agree on S ? Not necessarily so, as we are forcing even definition of the empty set.

Think of S as a collection of intervals, with μ measuring length of the interval. It would be really nice if μ^{*} did the same and even better when $S \subset \mathfrak{M}$ (i.e. $\left.\left.\bar{\mu}\right|_{S}=\mu\right)$. When does this happen? The answer to this is given in the LebesgueCarathéodory Theorem.

1.3.1 Lebesgue-Carathéodory Theorem

Call S a semi-ring if

1. $A, B \in S \Longrightarrow A \cap B \in S$
2. $A, B \in S \Longrightarrow \exists$ a finite disjoint family $\left\{C_{i}: 1 \leq i \leq n\right\}$ in S such that

$$
A \backslash B=\bigcup_{i=1}^{n} C_{i}
$$

The last requirement is much weaker than requiring $A \backslash B$ to be in S. Also, note that empty unions are allowed.

Example 25 Let S be the collection of all intervals of the form $[a, b)$. Half open intervals are needed to ensure the 2nd condition holds. For example, for $[c, d) \subset[a, b)$ with $c<a$ and $d<b$, then $[a, b) \backslash[c, d)$ is another half open interval. However, if we had only open intervals and an interval B was properly contained in another A, then $A \backslash B$ would have been half open so that S would not have been closed under relative complements.

Problem 26 Let X and Y be two non-empty sets and let S_{X} be a semiring on X and S_{Y} be a semiring on Y. Denote $Z=X \times Y$ and

$$
S_{Z}=\left\{A \times B: A \in S_{X}, B \in S_{Y}\right\}
$$

Prove that S_{Z} is a semiring on Z

Solution 27 Let $A, B \in S_{Z}$. Then, we can write $A=A_{1} \times B_{1}$ and $B=A_{2} \times B_{2}$, where $A_{1}, A_{2} \in S_{X}$ and $B_{1}, B_{2} \in S_{Y}$. We know that

$$
\left(A_{1} \times B_{1}\right) \cap\left(A_{2} \times B_{2}\right)=\left(A_{1} \cap A_{2}\right) \times\left(B_{1} \cap B_{2}\right)
$$

Since S_{X} and S_{Y} are semi-rings, therefore $A_{1} \cap A_{2} \in S_{X}$ and $B_{1} \cap B_{2} \in S_{Y}$. Let $\mathcal{A}=A_{1} \cap A_{2}$ and $\mathcal{B}=B_{1} \cap B_{2}$. Then, $A \cap B=\mathcal{A} \times \mathcal{B}$, where $\mathcal{A} \in S_{X}$ and $\mathcal{B} \in S_{Y}$. Thus, $A \cap B \in S_{Z}$.

Next, let $A, B \in S_{Z}$ and so, $A=A_{1} \times B_{1}$ and $B=A_{2} \times B_{2}$, where $A_{1}, A_{2} \in$ S_{X} and $B_{1}, B_{2} \in S_{Y} \Longrightarrow \exists$ a finite disjoint family $\left\{C_{i}: 1 \leq i \leq n\right\} \subset S_{X}$ and $\left\{D_{i}: 1 \leq i \leq m\right\} \subset S_{Y}$ such that

$$
A_{1} \backslash A_{2}=\bigcup_{i=1}^{n} C_{i} \text { and } B_{1} \backslash B_{2}=\bigcup_{i=1}^{m} D_{i}
$$

Now,

$$
\begin{aligned}
A \backslash B & =\left(A_{1} \times B_{1}\right) \backslash\left(A_{2} \times B_{2}\right)=\left(\left(A_{1} \backslash A_{2}\right) \times B_{1}\right) \cup\left(A_{1} \times\left(B_{1} \backslash B_{2}\right)\right) \\
& =\left(\left(\bigcup_{i=1}^{n} C_{i}\right) \times B_{1}\right) \cup\left(A_{1} \times\left(\bigcup_{i=1}^{m} D_{i}\right)\right)
\end{aligned}
$$

Note that $A_{1}=\left(A_{1} \backslash A_{2}\right) \cup\left(A_{1} \cap A_{2}\right)$ and $B_{1}=\left(B_{1} \backslash B_{2}\right) \cup\left(B_{1} \cap B_{2}\right)$ so that
$A \backslash B=\left(\left(\bigcup_{i=1}^{n} C_{i}\right) \times\left(\left(B_{1} \backslash B_{2}\right) \cup\left(B_{1} \cap B_{2}\right)\right)\right) \cup\left(\left(\left(A_{1} \backslash A_{2}\right) \cup\left(A_{1} \cap A_{2}\right)\right) \times\left(\bigcup_{i=1}^{n} D_{i}\right)\right)$
The first term becomes

$$
\left(\left(\bigcup_{i=1}^{n} C_{i}\right) \times\left(B_{1} \backslash B_{2}\right)\right) \cup\left(\left(\bigcup_{i=1}^{n} C_{i}\right) \times\left(B_{1} \cap B_{2}\right)\right)
$$

The second term becomes

$$
\left(\left(A_{1} \backslash A_{2}\right) \times\left(\bigcup_{i=1}^{m} D_{i}\right)\right) \cup\left(\left(A_{1} \cap A_{2}\right) \times\left(\bigcup_{i=1}^{m} D_{i}\right)\right)
$$

For the first term, note that $B_{1} \backslash B_{2}$ is disjoint from $B_{1} \cap B_{2}$ so that the first term, which comprises of sets each from S_{X} and S_{Y}, is a disjoint union of two sets in S_{Z}. Similarly, the other term is a disjoint union of two sets in S_{Z}. All in all,
$A \backslash B=\left(\left(\bigcup_{i=1}^{n} C_{i}\right) \times\left(\bigcup_{i=1}^{m} D_{i}\right)\right) \cup\left(\left(\bigcup_{i=1}^{n} C_{i}\right) \times\left(B_{1} \cap B_{2}\right)\right) \cup\left(\left(A_{1} \cap A_{2}\right) \times\left(\bigcup_{i=1}^{m} D_{i}\right)\right)$
which is a union of disjoint sets, so that the second axiom holds. If we allow for empty unions, then $\varnothing \in S_{Z}$

If S is a semi-ring, we can define R_{S} to be the collection of all finite disjoint unions of sets from S. Then, R_{S} is a ring i.e. a collection of sets closed under relative complements and unions.
Proof. $A \in R \Longrightarrow A \backslash A \in R_{S} \Longrightarrow \varnothing \in R_{S}$. Let $A, B \in R_{S}$. Then, $\exists\left\{A_{i}: 1 \leq i \leq n\right\},\left\{B_{i}: 1 \leq i \leq m\right\} \subset S$ such that

$$
A=\bigcup_{i=1}^{n} A_{i} \text { and } B=\bigcup_{i=1}^{m} B_{i}
$$

and $A_{i} \cap A_{j}=\varnothing=B_{i} \cap B_{j}$ for $i \neq j$. Then,

$$
A \backslash B=A \cap B^{c}=\bigcup_{i=1}^{n}\left(A_{i} \cap B^{c}\right)=\bigcup_{i=1}^{n} C_{i}
$$

Note that $C_{i} \cap C_{j}=A_{i} \cap B^{c} \cap A_{j} \cap B^{c}=\varnothing$ so that $A \backslash B \in R_{S}$
Generally, the union of two collections of disjoint sets may not be disjoint. In order to make sure that $A \cup B$ is in R_{S}, note that $A \cup B=(A \backslash B) \cup(A \cap B) \cup$ $(B \backslash A)$ is a disjoint union. Thus, to show that $A \cup B \in R_{S}$, we need to show that $A \cap B \in R_{S}$ for $A, B \in R_{S}$:

$$
\begin{aligned}
& A \cap B=\varnothing \cup(A \cap B) \\
& =\left(A \cap A^{c}\right) \cup(A \cap B) \\
& =A \cap\left(A^{c} \cup B\right)=A \cap\left(A \cap B^{c}\right)^{c} \\
& =A \backslash(A \backslash B), \text { thus } A \cap B \in R_{S}
\end{aligned}
$$

Lemma 28 Let S be a semiring and $\mu: S \longrightarrow[0, \infty]$ be a pre-measure. Then, μ extends to R_{S}

Proof. Let $\bar{\mu}: R_{S} \longrightarrow[0, \infty]$ be the extension of μ. If $A \in R_{S}$, then

$$
A=\bigcup_{i=1}^{n} A_{i}
$$

for disjoint A_{i} 's in S. Define $\bar{\mu}(A)=\mu\left(A_{1}\right)+\ldots+\mu\left(A_{n}\right)$. To show that this is well-defined, let

$$
A=\bigcup_{i=1}^{n} A_{i}=\bigcup_{i=1}^{m} B_{i}
$$

for disjoint A_{i} 's and B_{i} 's in S. Note that

$$
\begin{aligned}
\bigcup_{i=1}^{n} A_{i} & =\bigcup_{i=1}^{m} B_{i} \\
& \Longrightarrow A_{j} \cap \bigcup_{i=1}^{n} A_{i}=A_{j} \cap \bigcup_{i=1}^{m} B_{i} \\
& \Longrightarrow A_{j}=\bigcup_{i=1}^{m}\left(A_{j} \cap B_{i}\right) .
\end{aligned}
$$

Then $A_{j} \cap B_{k}$ for every k is in S. That is, $\left\{A_{j} \cap B_{k}: 1 \leq k \leq m\right\} \subset S$. This collection is also pairwise disjoint. Then, $\mu\left(A_{j}\right)=\mu\left(A_{j} \cap B_{1}\right)+\mu\left(A_{j} \cap B_{2}\right)+$ $\ldots+\mu\left(A_{j} \cap B_{m}\right)$ so that

$$
\sum_{j=1}^{n} \mu\left(A_{j}\right)=\sum_{j=1}^{n} \sum_{k=1}^{m} \mu\left(A_{j} \cap B_{k}\right) .
$$

The same argument can be repeated with B replaced with A and we can get the same for

$$
\sum_{k=1}^{m} \mu\left(B_{k}\right)
$$

except with the summation reversed. Let us do this.

$$
\begin{aligned}
\bigcup_{i=1}^{n} A_{i} & =\bigcup_{i=1}^{m} B_{i} \\
& \Longrightarrow \quad B_{i} \cap \bigcup_{i=1}^{n} A_{i}=B_{i} \cap \bigcup_{i=1}^{m} B_{i} \\
& \Longrightarrow \quad B_{i}=\bigcup_{i=1}^{n}\left(B_{i} \cap A_{k}\right)
\end{aligned}
$$

Then, $A_{k} \cap B_{i}$ for every k is in S. That is, $\left\{A_{k} \cap B_{i}: 1 \leq k \leq n\right\} \subset S$. This collection is also pairwise disjoint. Then, $\mu\left(B_{i}\right)=\mu\left(B_{i} \cap A_{1}\right)+\mu\left(B_{i} \cap A_{2}\right)+$ $\ldots+\mu\left(B_{i} \cap A_{n}\right)$ so that

$$
\sum_{i=1}^{m} \mu\left(B_{i}\right)=\sum_{i=1}^{m} \sum_{k=1}^{n} \mu\left(A_{k} \cap B_{i}\right)
$$

This and the previous double sum tells us that

$$
\sum_{i=1}^{m} \mu\left(B_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

so that $\bar{\mu}$ is well-defined.
P1 Since μ is a pre-measure, $\bar{\mu}(\varnothing)=\mu(\varnothing)=0$.
$\mathbf{P 2}$ We need to show that $\bar{\mu}$ is finitely additive. Let $\left\{A_{i}: 1 \leq i \leq n\right\} \subset R_{S}$ be a pairwise disjoint collection. Since $A_{i} \in R_{S}, \exists B_{j}^{(i)} \in S$ such that

$$
A_{i}=\bigcup_{j=1}^{m_{i}} B_{j}^{(i)}
$$

with $B_{i} \cap B_{j}=\varnothing$ for $i \neq j$. Then,

$$
\bar{\mu}\left(\bigcup_{i=1}^{n} A_{i}\right)=\bar{\mu}\left(\bigcup_{i=1}^{n} \bigcup_{j=1}^{m_{i}} B_{j}^{(i)}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \mu\left(B_{j}^{(i)}\right)
$$

since each $B_{j}^{(i)}$ is disjoint. Thus,

$$
\bar{\mu}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \bar{\mu}\left(A_{i}\right)
$$

Before the next property is established, we note that $\bar{\mu}$ is monotone: let $A \subset B$ with $A, B \in R_{S}$. Then, $\exists A_{i}, B_{j} \in S$ such that

$$
A=\bigcup_{i=1}^{n} A_{i} \text { and } B=\bigcup_{j=1}^{m} B_{j}
$$

Now, we have that

$$
\bar{\mu}(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right)=\mu\left(\bigcup_{i=1}^{n} A_{i}\right) \text { and } \bar{\mu}(B)=\sum_{j=1}^{m} \mu\left(B_{j}\right)=\mu\left(\bigcup_{j=1}^{m} B_{j}\right)
$$

where the first equalities follow from definition of $\bar{\mu}$ and the other by finite additivity of μ, a pre-measure. By countable monotonicity (hence finite monotonicity of μ) and finite additivity

$$
\bigcup_{i=1}^{n} A_{i} \subset \bigcup_{j=1}^{m} B_{j} \Longrightarrow \sum_{i=1}^{n} \mu\left(A_{i}\right) \leq \sum_{j=1}^{m} \mu\left(B_{j}\right)
$$

so that $\bar{\mu}(A) \leq \bar{\mu}(B)$.
P3 Let $A \in R_{S}$,

$$
A \subset \bigcup_{i=1}^{\infty} A_{i}
$$

and $A_{i} \in R_{S}$. We need to show that

$$
\bar{\mu}(A) \leq \sum_{k=1}^{\infty} \bar{\mu}\left(A_{j}\right)
$$

For this, define

$$
\widetilde{A}_{n}:=A_{n} \backslash \bigcup_{i=1}^{n-1} A_{i} \in R_{S}, A:=\bigcup_{i=1}^{\infty} \widetilde{A}_{i} \text { which gives us } \bar{\mu}\left(\widetilde{A}_{n}\right) \leq \bar{\mu}\left(A_{n}\right)
$$

Next, note so that $\widetilde{A}_{n} \in R_{S}$ so we can let

$$
\widetilde{A}_{i}=\bigcup_{k=1}^{n_{i}} C_{k}^{(i)}
$$

where $C_{k}^{(i)}$ are pairwise disjoint and $C_{k}^{(i)} \in S$ for each k. Then,

$$
A \subset \bigcup_{i=1}^{\infty} \widetilde{A}_{i} \subset \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{n_{j}} C_{k}^{(i)}
$$

The latter is still countable. Thus, WLOG, we can say that $A_{j} \in S$ is disjoint.
Since $A \in R_{S}$, we must have

$$
A=\bigcup_{i=1}^{m} B_{i}
$$

where B_{i} 's are from S and are pairwise disjoint. Then

$$
\begin{aligned}
A & \subset \bigcup_{i=1}^{\infty} A_{i} \\
& \Longrightarrow \bigcup_{i=1}^{m} B_{i} \subset \bigcup_{i=1}^{\infty} A_{i} \\
& \Longrightarrow \quad B_{k} \cap \bigcup_{i=1}^{m} B_{i} \subset B_{k} \cap \bigcup_{i=1}^{\infty} A_{i} \\
& \Longrightarrow \quad B_{k} \subset \bigcup_{i=1}^{\infty}\left(A_{i} \cap B_{k}\right) \\
& \Longrightarrow \quad \mu\left(B_{k}\right) \leq \sum_{k=1}^{\infty} \mu\left(A_{i} \cap B_{k}\right)
\end{aligned}
$$

where the last line follows since μ is a pre-measure. By definition of $\bar{\mu}$,

$$
\bar{\mu}(A)=\sum_{k=1}^{m} \mu\left(B_{k}\right) \leq \sum_{k=1}^{m} \sum_{i=1}^{\infty} \mu\left(A_{i} \cap B_{k}\right)=\sum_{i=1}^{\infty} \sum_{k=1}^{m} \mu\left(A_{i} \cap B_{k}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

where the last interchange of summations is possible since every summand is positive and finite.

With all this machinery, we can finally answer the question we set before the beginning of this subsection.

Theorem 29 (Lebesgue-Carathéodory) Let S be a semiring and $\mu: S \longrightarrow$ $[0, \infty]$ be a pre-measure. Then, if we define μ^{*}, outer measure, \mathfrak{A}, a σ-algebra and $\bar{\mu}=\left.\mu^{*}\right|_{\mathfrak{M}}$, we will have (a) $S \subset \mathfrak{A}$ and (b) $\bar{\mu}$ and μ agree on S.

Proof. By Lemma 28, instead of the semi-ring S, we can just as well use the ring R_{S}. Let $A \in R_{S}$. We want $A \in \mathfrak{A}$. That is, $\mu^{*}(E)=\mu(A \cap E)+$ $\mu\left(A^{c} \cap E\right)$ for every $E \subset X$. Fix $E \subset X$. By definition of outer measure μ^{*} (properties of infimum), for any $\epsilon>0$, we can have

$$
E \subset \bigcup_{i=1}^{\infty} E_{i} \Longrightarrow \mu^{*}(E) \geq \sum_{i=1}^{\infty} \mu\left(E_{i}\right)-\epsilon
$$

with $E_{i} \in R_{S}$. Since $E_{i}, A \in R_{S}$, we can have $E_{i} \backslash A=E_{i} \cap A^{c} \in R_{S}$ and $E_{i} \cap A \in R_{S}$. Then, $\mu\left(E_{i}\right)=\mu\left(E_{i} \backslash A\right)+\mu\left(E_{i} \cap A\right)$ so that

$$
\begin{aligned}
\sum_{i=1}^{\infty} \mu\left(E_{i}\right) & =\sum_{i=1}^{\infty} \mu\left(E_{i} \cap A^{c}\right)+\sum_{i=1}^{\infty} \mu\left(E_{i} \cap A\right) \\
& \geq \sum_{i=1}^{\infty} \mu\left(E_{i} \cap A^{c}\right)+\mu^{*}(E \cap A) \\
& \geq \mu^{*}(E \backslash A)+\mu^{*}(E \cap A)
\end{aligned}
$$

That is,

$$
\mu^{*}(E)+\epsilon \geq \sum_{i=1}^{\infty} \mu\left(E_{j}\right) \geq \mu^{*}(E \backslash A)+\mu^{*}(E \cap A)
$$

Since this inequality holds for any ϵ, we can let it go to zero and we will then be done (the other inequality holds, as well). Thus, A is μ^{*}-measurable. That is, $A \in \mathfrak{A}$.
(b) If $\mu(A)=\infty$, then $\bar{\mu}(A)=\mu(A)$, trivially. Assume otherwise. We divide the proof into two steps: for any $A \in \mathfrak{A}, \bar{\mu}(A) \leq \mu(A)$ and, conversely, $\mu(A) \leq \bar{\mu}(A)$. The first is immediate: to recall,

$$
\mu^{*}(E)=\inf \sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

where inf is taken over $\left\{E_{i}: i \in \mathbb{N}\right\} \subset S$ such that this family covers E. Since $A \subset A$ is a covering of itself and since $\mu^{*}(A)=\bar{\mu}(A)$ for $A \in \mathfrak{A}$, then $\bar{\mu}(A) \leq$ $\mu(A)$. For the second inequality, let

$$
A \subset \bigcup_{i=1}^{\infty} A_{i}
$$

with $A_{i} \in S$ for each i and let

$$
B_{i}=A_{i} \backslash \bigcup_{n=1}^{i-1} A_{n}
$$

Then,

$$
\begin{aligned}
B_{i} \cap B_{j} & =\left(A_{i} \backslash \bigcup_{k=1}^{i-1} A_{k}\right) \cap\left(A_{j} \backslash \bigcup_{m=1}^{j-1} A_{m}\right) \\
& =A_{i} \cap \bigcap_{k=1}^{i-1} A_{k}^{c} \cap A_{j} \cap \bigcap_{m=1}^{j-1} A_{m}^{c}=\varnothing
\end{aligned}
$$

since the index $A_{i} \cap A_{m_{0}}^{c}=\varnothing$ for some $1 \leq m_{0}<j$. Thus,

$$
\mu\left(\bigcup_{i=1}^{\infty} B_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(B_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

since $B_{i} \subset A_{i}$ for each i. We will be done if we can prove that

$$
\bigcup_{i=1}^{\infty} B_{i}=\bigcup_{i=1}^{\infty} A_{i}
$$

Since $B_{i} \subset A_{i}$ for each i, we must have

$$
\bigcup_{i=1}^{\infty} B_{i} \subset \bigcup_{i=1}^{\infty} A_{i}
$$

For the converse, let

$$
x \in \bigcup_{i=1}^{\infty} A_{i}
$$

Define $I=\left\{j: x \in A_{j}\right\} \subset \mathbb{N}$. By the well-ordering principle, I has a least element, say m. Then,

$$
x \in B_{m} \Longrightarrow x \in \bigcup_{i=1}^{\infty} B_{i}
$$

so that both sides of the inclusion hold.
For example, consider the collection $S=\{[a, b): a, b \in \mathbb{R}\}$ for subsets of \mathbb{R} and define $\mu([a, b))=b-a$. Then, we can have complete measure $\bar{\mu}$ defined on some σ-algebra \mathfrak{M} and $\mathfrak{m}_{1}([a, b))=\bar{\mu}([a, b))=b-a$ and \mathfrak{m}^{*} is the outer measure, the intermediate step. Such a measure is given a special name, called the Lebesgue Measure and is covered in the next section.

1.4 Lebesgue Measure

Let $X=\mathbb{R}^{p}$ for some integer p. Define a half-open rectangle $R=\left[a_{1}, b_{1}\right) \times \ldots \times$ $\left[a_{p}, b_{p}\right)$. Such a collection of R 's forms a semi-ring, as already been discussed for $p=1$. The pre-measure μ on such a semi-ring may be defined as the volume of each half-open rectangle $\mu: S \longrightarrow[0, \infty]$ by $\mu(R)=\left(b_{1}-a_{1}\right) \ldots\left(b_{p}-a_{p}\right)$. It is easy to see that $\mu(\varnothing)=0$ and that μ is finitely additive. Countable monotonicity requires some work. Assume $p=1$. Our goal will be to extract a finite cover.

Let

$$
[a, b) \subset \bigcup_{i=1}^{\infty}\left[a_{i}, b_{i}\right)
$$

and let $\epsilon>0$. There exists a j such that $b-\epsilon=b_{j}$. Define $\widetilde{b}_{j}=b_{j}+\epsilon$ for only this j and leave the others fixed. Similarly, there exists an i such that $a+\epsilon>a_{i}$. Define $\widetilde{a}_{i}=a_{i}-\epsilon$. Then, the collection

$$
\left\{\left(\widetilde{a}_{k}, \widetilde{b}_{k}\right): k \in \mathbb{N}\right\}
$$

covers $[a, b]$ so that we can have a finite subcover

$$
\left\{\left(\widetilde{a}_{k}, \widetilde{b}_{k}\right): 1 \leq i \leq N\right\}
$$

and so

$$
b-a \leq \sum_{k=1}^{N} \widetilde{b}_{k}-\widetilde{a}_{k}=\sum_{k=1}^{N} b_{k}-a_{k}+2 \epsilon \leq \sum_{k=1}^{\infty} b_{k}-a_{k}+2 \epsilon
$$

Since this is true for every ϵ, we can let it tend to zero. Thus, from this premeasure on the semiring S, we can construct an outer measure on $2^{\mathbb{R}}$ and use that to form a measure on a σ-algebra \mathfrak{M}.

This argument can be generalised.
Problem 30 Let $f: I \longrightarrow \mathbb{R}$ be continuous for any interval $I \subset \mathbb{R}$. Prove that if f is increasing and continuous, then $\nu([a, b)):=f(b)-f(a)$ is a pre-measure on the semiring S of half-open intervals $[a, b)$

Solution 31 Let $a, b \in \mathbb{R}$ and $a \leq b$. Then, $f(a) \leq f(b)$ so that $\nu([a, b)) \geq 0$. Hence the function is well-defined. Also, since $[a, a)=\varnothing$ is an interval for any $a \in \mathbb{R}$, then $\nu([a, a))=f(a)-f(a)=0$. Thus, $\nu(\varnothing)=0$.

Now, let

$$
E=[a, b)=\bigcup_{i=1}^{n} E_{i}=\bigcup_{i=1}^{n}\left[\alpha_{i}, \beta_{i}\right)
$$

where $\left\{E_{i}: i \in \mathbb{N}\right\} \subset S$ and $E_{i} \cap E_{j}=\varnothing$. If the E_{i} 's are already ordered, then, since the union of two disjoint intervals I_{1} and I_{2} is an interval if $\inf I_{2}=\sup I_{2}$ we can have $a=\alpha_{1} \leq \beta_{1}=\alpha_{2} \leq \beta_{2}=\alpha_{3} \leq \ldots=\alpha_{n} \leq \beta_{n}=b$. If E_{i} 's are not ordered, then for $k=1, \ldots, n$, let $a_{k}=\min _{i=k}^{n} \alpha_{i}, b_{k}=\min _{i=k}^{n} \beta_{i}$. It follows that we have the chain $a=a_{1} \leq b_{1}=a_{2} \leq b_{2}=a_{3} \leq \ldots=a_{n} \leq b_{n}=b$ and

$$
\begin{aligned}
\nu(E) & =f(b)-f(a)=f\left(b_{n}\right)+\sum_{i=2}^{n} f\left(a_{i}\right)-\sum_{i=2}^{n} f\left(a_{i}\right)-f\left(a_{1}\right) \\
& =f\left(b_{n}\right)+\sum_{i=2}^{n} f\left(b_{i}\right)-\sum_{i=2}^{n} f\left(a_{i}\right)-f\left(a_{1}\right) \\
& =\sum_{i=1}^{n} f\left(b_{i}\right)-\sum_{i=1}^{n} f\left(a_{i}\right)=\sum_{i=1}^{n}\left(f\left(b_{i}\right)-f\left(a_{i}\right)\right)=\sum_{i=1}^{n} \nu\left(E_{i}\right)
\end{aligned}
$$

Thus, ν is finitely additive. We prove that ν is monotone: let $[a, b) \subset[c, d)$ with $c \leq a<b \leq d$. Then, by monotonicity of $f, f(b)-f(a) \leq f(d)-f(a) \leq$ $f(d)-f(c)$. Thus, $\nu([a, b)) \leq \nu([c, d))$.

These two combined tell us that ν is finitely monotone. We now prove that ν is countably monotone.

Let

$$
E=[a, b) \subset \bigcup_{i=1}^{\infty} E_{i}=\bigcup_{i=1}^{\infty}\left[a_{i}, b_{i}\right)
$$

Let $\epsilon>0$ so that, by continuity of f, for every $\epsilon>0$, we can have we can have $\delta_{i}>0$ and $\delta>0$ such that $a_{i}<\delta_{i}+a_{i} \Longrightarrow f\left(a_{i}\right)-f\left(a_{i}-\delta_{i}\right)<\frac{\epsilon}{2^{i}}$ and $b-\delta<b \Longrightarrow f(b)-f(b-\delta)<\frac{\epsilon}{2}$

Now,

$$
[a, b-\delta] \subset[a, b) \subset \bigcup_{i=1}^{\infty}\left[a_{i}, b_{i}\right) \subset \bigcup_{i=1}^{\infty}\left(a_{i}-\delta_{i}, b_{i}\right)
$$

That is,

$$
[a, b-\delta] \subset \bigcup_{i=1}^{\infty}\left(a_{i}-\delta_{i}, b_{i}\right)
$$

Since $[a, b-\delta]$ is compact and

$$
\bigcup_{i=1}^{\infty}\left(a_{i}-\delta_{i}, b_{i}\right)
$$

is an open cover, we can extract a finite subcover, say

$$
[a, b-\delta] \subset \bigcup_{i=1}^{n}\left(a_{i}-\delta_{i}, b_{i}\right)
$$

By properties of ν already established (monotonicity and, therefore, finite subadditivity), we have

$$
f(b-\delta)-f(a) \leq \sum_{i=1}^{n} f\left(b_{i}\right)-f\left(a_{i}-\delta_{i}\right)
$$

Now,

$$
\begin{aligned}
f(b)-f(a) & <f(b-\delta)-f(a)+\frac{\epsilon}{2} \\
& \leq \sum_{i=1}^{n}\left(f\left(b_{i}\right)-f\left(a_{i}-\delta_{i}\right)\right)+\frac{\epsilon}{2} \\
& <\sum_{i=1}^{n}\left(f\left(b_{i}\right)-f\left(a_{i}\right)+\frac{\epsilon}{2^{i+1}}\right)+\frac{\epsilon}{2} \\
& =\sum_{i=1}^{n} f\left(b_{i}\right)-f\left(a_{i}\right)+\sum_{i=1}^{n} \frac{\epsilon}{2^{i+1}}+\frac{\epsilon}{2}
\end{aligned}
$$

Letting $n \rightarrow \infty$ gives us

$$
f(b)-f(a) \leq \sum_{i=1}^{\infty} f\left(b_{i}\right)-f\left(a_{i}\right)+\epsilon
$$

We can now let $\epsilon \rightarrow 0$ to get the required countable monotonicity.
For $f(t)=t$, this defines the Lebesgue measure.
As of now, the pre-measure μ defined in the beginning of this section is undefined on single points. However, we can extend this μ to the Lebesgue
measure \mathfrak{m}_{p} on the σ-algebra \mathfrak{M}_{p}, in which case $\mathfrak{m}_{p}(\{a\})=0$ and $\mathfrak{m}_{p}(A)=0$ for any countable A. The measure \mathfrak{m}_{p} is also translation invariant: $\mathfrak{m}_{p}(a+A)=$ $\mathfrak{m}_{p}(A)$ if $A \in \mathfrak{M}_{p}$. In particular, $\mathfrak{m}_{1}(\mathbb{Q})=0$ and, therefore, $\mathfrak{m}_{1}\left(\mathbb{Q}^{c} \cap[0,1]\right)=1$. This example shows that everywhere dense sets have zero measure.

Problem 32 Let X be any non-empty set, $S \subset 2^{X}$ and $\mu: S \longrightarrow[0, \infty]$ be a function such that there exists a σ-algebra \mathfrak{A} and a measure $\bar{\mu}$ on \mathfrak{A} such that $S \subset \mathfrak{A}$ and for any $A \in S$, we have $\mu(A)=\bar{\mu}(A)$. Is it true that μ is a pre-measure?

Solution 33 No. We are not guaranteed that the empty set is in S, so we cannot even say that $\mu(\varnothing)=0$. It is true that μ is finite additive and countably monotone by definition (since every measure is) but the very first requirement for a pre-measure may fail to hold.

Definition 34 Let (X, τ) be a topological space. We call G a G_{δ} set if

$$
G=\bigcap_{i=1}^{\infty} O_{i}
$$

where O_{i} is open for each i. We call E a F_{σ}-set if

$$
E=\bigcup_{i=1}^{\infty} F_{i}
$$

where F_{i} is closed for each i.
These sets are complements of each other.
Theorem 35 The following are equivalent

1. $E \in \mathfrak{M}_{p}$
2. $\forall \epsilon>0$, there exists an open O with $E \subset O$ and $\mathfrak{m}_{p}(O \backslash E)<\epsilon$
3. There exists a G_{δ} set G with $E \subset G$ and $\mathfrak{m}_{p}(G \backslash E)=0$
4. $\forall \epsilon>0$, there exists a closed set F with $F \subset E$ and $\mathfrak{m}_{p}(E \backslash F)<\epsilon$
5. There exists an F_{σ} set F with $F \subset E$ and $\mathfrak{m}_{p}(E \backslash F)=0$

Proof. $(1 \Longrightarrow 2)$
Let $E \in \mathfrak{M}_{p}$ with $\mathfrak{m}_{p}(E)<\infty$. Then, by Lebesgue-Carathéodory Theorem, $\mathfrak{m}_{p}(E)=\mathfrak{m}_{p}^{*}(E)$ so that

$$
\mathfrak{m}_{p}(E)=\inf \sum_{i=1}^{\infty} \text { Volume }\left(R_{i}\right)
$$

By the properties of infimum, we can choose a family $\left\{R_{i}: i \in \mathbb{N}\right\}$ with

$$
\mathfrak{m}_{p}^{*}(E)>\sum_{i=1}^{\infty} \text { Volume }\left(R_{i}\right)-\frac{\epsilon}{2}
$$

Enlarge each R_{i} to an open \widetilde{R}_{i} so that

$$
\text { Volume }\left(\widetilde{R}_{i}\right)=\operatorname{Volume}\left(R_{i}\right)+\frac{\epsilon}{2^{i+1}}
$$

Then,

$$
O=\bigcup_{i=1}^{\infty} \widetilde{R}_{i}
$$

is a countable union of open sets and is, therefore, open with
$\mathfrak{m}_{p}(O) \leq \sum_{i=1}^{\infty} \mathfrak{m}_{p}\left(\widetilde{R}_{i}\right)=\sum_{i=1}^{\infty}\left(\mathfrak{m}_{p}\left(R_{i}\right)+\frac{\epsilon}{2^{i+1}}\right)=\frac{\epsilon}{2}+\sum_{i=1}^{\infty} \mathfrak{m}_{p}\left(R_{i}\right)<\mathfrak{m}_{p}(E)+\epsilon$
That is, $\mathfrak{m}_{p}(O \backslash E)=\mathfrak{m}_{p}(O)-\mathfrak{m}_{p}(E)<\epsilon$
If $\mathfrak{m}_{p}(E)=\infty$, we can take $R_{j}=\left[-2^{j}, 2^{j}\right) \times \ldots \times\left[-2^{j}, 2^{j}\right)$ and let $E_{j}=$ $E \cap R_{j}$ so that $\mathfrak{m}_{p}\left(E_{j}\right)<\infty$. Now take open sets O_{j} with $E_{j} \subset O_{j}$ such that $\mathfrak{m}_{p}\left(O_{j} \backslash E_{j}\right)<\frac{\epsilon}{2^{j}}$. With this, we can have an open set
$O=\bigcup_{i=1}^{\infty} O_{i}$ with $E \subset O \Longrightarrow O \backslash E \subset \bigcup_{i=1}^{\infty}\left(O_{i} \backslash E_{i}\right) \Longrightarrow \mathfrak{m}_{p}(O \backslash E)<\sum_{i=1}^{\infty} \mathfrak{m}_{p}\left(O_{i} \backslash E_{i}\right)<\epsilon$
$(2 \Longrightarrow 3)$
For $\epsilon=\frac{1}{k}$, we can have $E \subset O_{k}$ for each k so that

$$
\begin{aligned}
G & =\bigcap_{i=1}^{\infty} O_{k} \supset E \Longrightarrow \mathfrak{m}_{p}(G \backslash E) \leq \mathfrak{m}_{p}\left(O_{k} \backslash E\right)<\frac{1}{k} \Longrightarrow \mathfrak{m}_{p}(G \backslash E)=0 \\
(3 & \Longrightarrow 1)
\end{aligned}
$$

We know that there is a G_{δ} set G with $E \subset G$ and $\mathfrak{m}_{p}^{*}(G \backslash E)=0$ (note the use of star here!). Thus, $G \backslash E$ is measurable with respect to \mathfrak{m}_{p}^{*} by Proposition 20 and so, $G \backslash E \in \mathfrak{M}_{p}$. Since G is the union of open sets, clearly $G \in \mathfrak{M}_{p}$. Since $E \subset G$, we have $E=G \backslash(G \backslash E)$. Thus, E is measurable.
$(1 \Longrightarrow 4)$
Let $E \in \mathfrak{M}_{p}$ and let $\epsilon>0$. Since \mathfrak{M}_{p} is a σ-algebra, we must have $E^{c} \in \mathfrak{M}_{p}$. Then, there is an open set O with $E^{c} \subset O$ and $\mathfrak{m}_{p}\left(O \backslash E^{c}\right)<\epsilon$. Now, $E^{c} \subset$ $O \Longrightarrow O^{c} \subset E^{c c}=E$. That is, $\mathfrak{m}_{p}\left(O \backslash E^{c}\right)=\mathfrak{m}_{p}(O)-\mathfrak{m}_{p}\left(E^{c}\right)$. Now, note that $\mathfrak{m}_{p}(X)=\mathfrak{m}_{p}(O)+\mathfrak{m}_{p}\left(O^{c}\right)$ and, similarly, $\mathfrak{m}_{p}(X)=\mathfrak{m}_{p}(E)+\mathfrak{m}_{p}\left(E^{c}\right)$. We, therefore have $\mathfrak{m}_{p}(X)-\mathfrak{m}_{p}(X)=\mathfrak{m}_{p}(O)+\mathfrak{m}_{p}\left(O^{c}\right)-\mathfrak{m}_{p}(E)-\mathfrak{m}_{p}\left(E^{c}\right)=0$ so that $\mathfrak{m}_{p}\left(O \backslash E^{c}\right)=\mathfrak{m}_{p}(O)-\mathfrak{m}_{p}\left(E^{c}\right)=\mathfrak{m}_{p}(E)-\mathfrak{m}_{p}\left(O^{c}\right)=\mathfrak{m}_{p}\left(E \backslash O^{c}\right)$. Since O^{c} is closed, by (2), the proof is done.

$$
(4 \Longrightarrow 5)
$$

Let $\epsilon=\frac{1}{n}$. Then, there exists a closed set F_{n} with $F_{n} \subset E$ and $\mathfrak{m}_{p}\left(E \backslash F_{n}\right)<$ $\frac{1}{n}$. By definition,

$$
F=\bigcup_{n=1}^{\infty} F_{n}
$$

tells us that F is a F_{σ}-set. Also, since $F_{n} \subset F$ so that $E \backslash F \subset E \backslash F_{n}$ and so, by monotonicity of $\mathfrak{m}_{p}, \mathfrak{m}_{p}(E \backslash F) \leq \mathfrak{m}_{p}\left(E \backslash F_{n}\right)<\frac{1}{n}$. Letting $n \rightarrow \infty$ gives us $\mathfrak{m}_{p}(E \backslash F) \leq 0$. That is, $\mathfrak{m}_{p}(E \backslash F)=0$.
($5 \Longrightarrow 1$)
We know that there is a F_{σ} set F with $F \subset E$ and $\mathfrak{m}_{p}^{*}(E \backslash F)=0$. That is, $E \backslash F$ is \mathfrak{m}_{p}^{*}-measurable and so $E \backslash F \in \mathfrak{M}_{p}$. Moreover, $F \in \mathfrak{M}_{p}$ because it is the intersection of open sets. Since $F \subset E$, we have $E=E \cap X=E \cap\left(F \cup F^{c}\right)=$ $(F \cup E) \cap\left(F^{c} \cup E\right)=F \cup\left(E \cap F^{c}\right)=F \cup(E \backslash F)$. Since $E \backslash F, F \in \mathfrak{M}_{p}$, it follows that $E=F \cup(E \backslash F) \in \mathfrak{M}_{p}$, since any σ-algebra is closed under unions. Thus, E is measurable.

This tells us something very important:
Theorem 36 (Regularity of Lebesgue Measure) Assume that $E \in \mathfrak{M}_{p}$. Then, $\mathfrak{m}_{p}(E) \stackrel{(1)}{=} \inf \left\{\mathfrak{m}_{p}(O): O\right.$ is open and $\left.E \subset O\right\}$
$\stackrel{(2)}{=} \sup \left\{\mathfrak{m}_{p}(K): K\right.$ is compact and $\left.K \subset E\right\}$
Proof. By properties of infimum and (2) in Theorem 35, The first equality follows directly. For the second equality, by (4) in Theorem 35, we need this only for closed sets E. Let $R_{j}=\left[-2^{j}, 2^{j}\right] \times \ldots \times\left[-2^{j}, 2^{j}\right]$ and let $K_{j}=E \cap R_{j}$. Then, K_{j} is compact. Note that $K_{1} \subset K_{2} \subset \ldots$ Then,

$$
E=\bigcup_{i=1}^{\infty} K_{i} \Longrightarrow \mathfrak{m}_{p}(E)=\lim _{n \rightarrow \infty} \mathfrak{m}_{p}\left(K_{n}\right)=\sup \mathfrak{m}_{p}\left(K_{n}\right)
$$

which establishes the second equality.

1.4.1 A non-measurable Set

And now, we will construct a non-measurable set $E \subset[0,1]$ such that $E \in \mathfrak{M}_{p}$. Call $x, y \in[0,1]$ equivalent if $x-y \in \mathbb{Q}$. Thus, this relation partitions $[0,1]$. That is,

$$
[0,1]=\bigcup_{\alpha} A_{\alpha}
$$

where α is a representative of each equivalence class. That is, if $x, y \in A_{\alpha}$, then $x-y \in \mathbb{Q}$. In this indexing, the Axiom of Choice is needed (there exists a set $C \subset[0,1]$ such that for every α, C has exactly one element from A_{α}). This C is not measurable. Assume that it is.

If $q, r \in \mathbb{Q}$ with $q \neq r$, then $C+q$ and $C+r$ are disjoint because if $z \in$ $(C+q) \cap(C+r)$, then $z=x+q$ and $z=y+r$ for some $x, y \in C$. Then, $x \sim y$ but that would mean $x=y$ so that $q=r$, a contradiction.

Thus, $C+q$ and $C+r$ are two distinct measurable sets. That is, $C+q \in \mathfrak{M}_{p}$ for every q. It is easy to prove that

$$
\bigcup_{q \in \mathbb{Q} \cap[0,1]}(C+q) \subset[0,2]
$$

which is a countable union of disjoint sets. Thus,

$$
\begin{aligned}
2 & =\mathfrak{m}_{p}([0,2]) \geq \mathfrak{m}_{p}\left(\bigcup_{q \in \mathbb{Q}}(C+q)\right) \\
& =\sum_{q \in \mathbb{Q}} \mathfrak{m}_{p}(C+q)=\sum_{q \in \mathbb{Q}} \mathfrak{m}_{p}(C)
\end{aligned}
$$

which is either 0 or infinity. The latter is a contradiction so that $\mathfrak{m}_{p}(C)=0$. However,

$$
[0,1] \subset \bigcup_{q \in \mathbb{Q}}(C+q) \Longrightarrow 1=\mathfrak{m}_{p}([0,1]) \leq \sum_{q \in \mathbb{Q}} \mathfrak{m}_{p}(C)=0
$$

another contradiction.
Thus, C is not measurable.
Had it been \mathfrak{m}_{p}^{*} instead of \mathfrak{m}_{p}, we would not have been able to use countable additivity of measure.

In fact, every set of positive measure contains a non-measurable set.
Proof. As above, let $E \subset \mathbb{R}$ be a measurable subset of $E \in \mathfrak{M}_{1}$. Call $x, y \in E$ equivalent if $x-y \in \mathbb{Q}$. Let C be the set of representatives for this equivalence relation. C is not measurable. Assume that it is.

As above, $C+q$ and $C+r$ for $q, r \in \mathbb{Q}$ are two distinct measurable sets. That is, $C+q \in \mathfrak{M}_{1}$ for every q. Consider $C+q \bmod 1$ for every $q \in \mathbb{Q} \cap[0,1)$. Then,

$$
\bigcup_{q \in \mathbb{Q} \cap(0,1]}(C+q \bmod 1)=[0,1]
$$

so that

$$
\mathfrak{m}_{1}([0,1])=\sum_{q \in \mathbb{Q} \cap(0,1]} \mathfrak{m}_{1}(C+q \bmod 1)=\sum_{i=1}^{\infty} \mathfrak{m}_{1}(C)
$$

If C were measurable, then $\mathfrak{m}_{1}(C) \geq 0$. However, the infinite sum of repeated non-negative numbers is either 0 or infinity, neither of which is equal to $1=$ $\mathfrak{m}_{1}([0,1])$.

Moreover, the Axiom of Choice is, in fact, equivalent to existence of nonmeasurable sets.

All in all, this says that $\mathfrak{M}_{p} \neq 2^{\mathbb{R}^{p}}$

1.4.2 Cantor Set

There is a unique creature called the Cantor set. It is a set with zero measure and is yet uncountable. It is constructed via an iterative process in which at the n-th step, we delete intervals C_{n}. The countable intersection of such sets C_{n} is the Cantor Set C. Usually, the C_{n} 's are formed by deleting the middle third interval at each n-th step but this is allowed to vary. For example, if we consider deleting middle thirds, then $C_{1}=[0,1 / 3] \cup[2 / 3,1]$ and $C_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup$ $[2 / 3,7 / 9] \cup[8 / 9,1]$ and so on. The Cantor set $C \neq \varnothing$ because $0 \in C$. Moreover, C is measurable since we are taking countable intersection of measurable sets. For each n, it is obvious that $\mathfrak{m}_{1}\left(C_{n}\right)=2^{n} / 3^{n}$ (see Problem 37) where the denominator is length of one interval in C_{n} and the numerator follows from the number of intervals. Moreover, $C \subset C_{n}$. As $n \rightarrow \infty$, by continuity of Lebesgue measure, $\mathfrak{m}_{1}(C)=0$.

Problem $37 C$ is a perfect.
Recall that a set is said to be perfect if it has no isolated points. Thus, we have to prove that $\forall x \in C$, any neighborhood of x contains another point from C.
Solution 38 Let $\epsilon>0$. For $x \in C$, define $N_{\epsilon}(x)=\{y:|x-y|<\epsilon\}$. We need to show $C \cap N_{\epsilon}(x) \backslash\{x\} \neq \varnothing$.

Since $\epsilon>0$, by the Archimedean property of real numbers, $\exists N$ such $1 / 3^{N}<$ ϵ. Since $C_{1}=[0,1 / 3] \cup[2 / 3,1]$. $C_{2}=[0,1 / 9] \cup[2 / 9,3 / 9] \cup[6 / 9,7 / 9] \cup[8 / 9,9 / 9]$ and, in general, for the N-th step, we have

$$
C_{N}=\bigcup_{k=0}^{3^{N-1}-1}\left(\left[\frac{3 k}{3^{N}}, \frac{3 k+1}{3^{N}}\right] \cup\left[\frac{3 k+2}{3^{N}}, \frac{3 k+3}{3^{N}}\right]\right)
$$

and C is formed by the countably infinite intersection of such C_{i} 's. It follows that $x \in\left[\frac{3 k}{3^{N}}, \frac{3 k+1}{3^{N}}\right]=E_{k}$ (say) or $x \in\left[\frac{3 k+2}{3^{N}}, \frac{3 k+3}{3^{N}}\right]=E_{k^{\prime}}$ (say). Moreover

$$
\mathfrak{m}_{1}\left(E_{k}\right)=\frac{3 k+1}{3^{N}}-\frac{3 k}{3^{N}}=\frac{1}{3^{N}}=\frac{3 k+3}{3^{N}}-\frac{3 k+2}{3^{N}}=\mathfrak{m}_{1}\left(E_{k^{\prime}}\right)<\epsilon
$$

Thus, if $x \in E_{k}$, then $E_{k} \subset N_{\epsilon}(x)$. If $x \in E_{k^{\prime}}$, then $E_{k^{\prime}} \subset N_{\epsilon}(x)$.
Now in both cases, in the $N+1$ step, E_{k} is split into

$$
\begin{aligned}
& {\left[\frac{3^{2} k}{3^{N+1}}, \frac{3^{2} k+1}{3^{N+1}}\right] \cup\left[\frac{3^{2} k+2}{3^{N+1}}, \frac{3^{2} k+3}{3^{N+1}}\right] } \\
= & {\left[\frac{3 j}{3^{N+1}}, \frac{3 j+1}{3^{N+1}}\right] \cup\left[\frac{3 j+2}{3^{N+1}}, \frac{3 j+3}{3^{N+1}}\right]=E_{k}^{\prime} \cup E_{k}^{\prime \prime} \quad(\text { say }) }
\end{aligned}
$$

and $\left[\frac{3 k+2}{3^{N}}, \frac{3 k+3}{3^{N}}\right]$ is split into

$$
\begin{aligned}
& {\left[\frac{3^{2} k+6}{3^{N+1}}, \frac{3^{2} k+7}{3^{N+1}}\right] \cup\left[\frac{3^{2} k+8}{3^{N+1}}, \frac{3^{2} k+9}{3^{N+1}}\right] } \\
= & {\left[\frac{3(j+2)}{3^{N+1}}, \frac{3(j+2)+1}{3^{N+1}}\right] \cup\left[\frac{3(j+2)+8}{3^{N+1}}, \frac{3(j+2)+3}{3^{N+1}}\right]=E_{k^{\prime}}^{\prime} \cup E_{k^{\prime}}^{\prime \prime} \quad \text { (say), } }
\end{aligned}
$$

for $j=3 k$. That is, replacing the dummy variable, we can re-write C_{N+1} as

$$
C_{N+1}=\bigcup_{k=0}^{3^{N}-1}\left(\left[\frac{3 k}{3^{N+1}}, \frac{3 k+1}{3^{N+1}}\right] \cup\left[\frac{3 k+2}{3^{N+1}}, \frac{3 k+3}{3^{N+1}}\right]\right)
$$

Again, note the

$$
\mathfrak{m}_{1}\left(E_{k^{\prime}}^{\prime}\right)=\frac{1}{3^{N+1}}=\mathfrak{m}_{1}\left(E_{k^{\prime}}^{\prime \prime}\right)=\mathfrak{m}_{1}\left(E_{k}^{\prime}\right)=\mathfrak{m}_{1}\left(E_{k}^{\prime \prime}\right)
$$

If $x \in E_{k}$, then either $x \in E_{k}^{\prime}$ or $x \in E_{k}^{\prime \prime}$. If $x \in E_{k}^{\prime}$, then since $C \subset E_{k}^{\prime \prime} \subset E_{k} \subset$ $N_{\epsilon}(x)$, we must have $C \cap N_{\epsilon}(x) \backslash\{x\} \neq \varnothing$. If $x \in E_{k}^{\prime \prime}$, then since $C \subset E_{k}^{\prime} \subset$ $E_{k} \subset N_{\epsilon}(x)$, we must have $C \cap N_{\epsilon}(x) \backslash\{x\} \neq \varnothing$. Similarly, $x \in E_{k^{\prime}}$, then either $x \in E_{k^{\prime}}^{\prime}$ or $x \in E_{k^{\prime}}^{\prime \prime}$. If $x \in E_{k^{\prime}}^{\prime}$, then since $C \subset E_{k^{\prime}}^{\prime \prime} \subset E_{k} \subset N_{\epsilon}(x)$, we must have $C \cap N_{\epsilon}(x) \backslash\{x\} \neq \varnothing$. If $x \in E_{k^{\prime}}^{\prime \prime}$, then since $C \subset E_{k^{\prime}}^{\prime} \subset E_{2} \subset N_{\epsilon}(x)$, we must have $C \cap N_{\epsilon}(x) \backslash\{x\} \neq \varnothing$. In either case, we have that, for any $x \in C$ and any $\epsilon>0, C \cap N_{\epsilon}(x) \backslash\{x\} \neq \varnothing$.

Theorem $39 C$ is uncountable
Proof. Assume otherwise. Then, we can let $C=\left\{c_{k}: k \in \mathbb{N}\right\} . C_{1}$ is the union of two disjoint intervals. One of these does not contain c_{1}. Let $C \cap C_{1}=F_{1}$ be the set which does not contain $c_{1} . F_{1}$ is a union of two parts, one of which does not contain c_{2}. Call this part (which does not contain c_{2}) F_{2} and so on. Eventually, we end up with a sequence $F_{n+1} \subset F_{n} \subset C$ where $c_{k} \notin F_{k}$. If we have countably many compact sets and all finite intersections are non-empty, then the total intersection is non-empty.

Since we have a decreasing sequence of sets, the intersection

$$
F=\bigcap_{n=1}^{\infty} F_{n} \neq \varnothing
$$

Moreover, $F \subset C$. That is, if $x \in F$, then $x \in C$. Hence $x=c_{N}$ for some N, a contradiction, since $c_{N} \notin F_{N}$ and $F \subset F_{N} \subset C$.

Recall that the Borel σ-algebra \mathfrak{L} is the minimal σ-algebra that contains all open subsets of \mathbb{R}, under the usual topology. Since \mathfrak{L} is the smallest σ-algebra on \mathbb{R}, we can claim that $\mathfrak{L} \subset \mathfrak{M}_{1}$. However, the converse does not hold. By completeness of \mathfrak{M}_{1}, any subset of the Cantor set is in \mathfrak{M}_{1}. It can shown that there is such a subset not in \mathfrak{L}. Moreover, the completion of \mathfrak{L} gives \mathfrak{M}_{1} but the proof of this fact will have to wait for now, until we get into a discussion of functions acting on Measure Spaces.

Problem $40 C$ is totally disconnected set.
Solution 41 We need to show that for every $x \in C$, any neighborhood of x contains a point from the complement of C. That is, we need to show that $\forall x \in C$ and any $\epsilon>0, C^{c} \cap N_{\epsilon}(x) \neq \varnothing$. To begin the proof, we observe that

$$
C^{c}=\bigcup_{n=1}^{\infty} \bigcup_{k=0}^{3^{n-1}-1}\left(\frac{3 k+1}{3^{n}}, \frac{3 k+2}{3^{n}}\right)=\bigcup_{n=1}^{\infty} \bigcup_{k=0}^{3^{n-1}-1} I_{k}
$$

in $[0,1]$. Again, since $\epsilon>0$, by the Archimedean property of real numbers, $\exists N$ such that $1 / 3^{N+1}<\epsilon$. Note that, at the N-th step, $\mathfrak{m}_{1}\left(I_{k}\right)=3^{-N}<3 \mathfrak{m}_{1}\left(I_{k}\right)=$ $3^{-N+1}<\epsilon$. Moreover, $x \in E_{k}$ or $x \in E_{k^{\prime}}$. In either case, $I_{k} \cap N_{\epsilon}(x) \neq \varnothing$ since $\mathfrak{m}_{1}\left(N_{\epsilon}(x)\right)=2 \epsilon>\epsilon>\mathfrak{m}_{1}\left(I_{k}\right)$ and I_{k} is in between E_{k} and $E_{k^{\prime}}$. That is, $C^{c} \cap$ $N_{\epsilon}(x) \neq \varnothing$.

Problem 42 Suppose that in the construction of a Cantor set, on the n-th step, instead of throwing away the middle third of every interval, we throw away middle intervals of length $a_{n}>0$ (a_{n} depends only on n). Show that, by choosing the right sequence $\left\{a_{n}: n \in \mathbb{N}\right\}$, we can make the measure of the resulting set to be any number between 0 and 1. Deduce that there exists an open subset of $[0,1]$ whose boundary has positive measure.

Solution 43 Let $x \in[0,1]$. We want to construct a Cantor set of Lebesgue measure x. Since $x \in[0,1], \exists$ a sequence $\left\{b_{n}: n \in \mathbb{N}\right\}$ such that

$$
x=\sum_{n=1}^{\infty} b_{n}
$$

Let

$$
1-x=\sum_{n=1}^{\infty} a_{n}
$$

where a_{n} is some sequence dependent on the sequence $\left\{b_{n}: n \in \mathbb{N}\right\}$, clearly convergent. Now, begin with $[0,1]$ and throw away

$$
\left(\frac{1-a_{1}}{2}, \frac{1+a_{1}}{2}\right)
$$

which has Lebesgue measure a_{1}. The resulting C_{1} is

$$
C_{1}=\left[0, \frac{1-a_{1}}{2}\right] \cup\left[\frac{1+a_{1}}{2}, 1\right]
$$

The middle point of

$$
\left[0, \frac{1-a_{1}}{2}\right]
$$

is

$$
\frac{1-a_{1}}{4}
$$

so for the left interval, we throw away

$$
\left(\frac{1-a_{1}-a_{2}}{4}, \frac{1-a_{1}+a_{2}}{4}\right) .
$$

This set has Lebesgue measure $a_{2} / 2$. Similarly, the middle point for the right interval is $\frac{3+a_{1}}{4}$, we throw away

$$
\left(\frac{3+a_{1}}{4}-\frac{a_{2}}{4}, \frac{3+a_{1}}{4}+\frac{a_{2}}{4}\right)
$$

This set has Lebesgue measure $a_{2} / 2$, so in total, we have thrown away intervals of length a_{2}. We are left with

$$
\begin{aligned}
C_{2}= & {\left[0, \frac{1-a_{1}-a_{2}}{4}\right] \cup\left[\frac{1-a_{1}+a_{2}}{4}, \frac{2-2 a_{1}}{4}\right] } \\
& \cup\left[\frac{2+2 a_{1}}{4}, \frac{3+a_{1}-a_{2}}{4}\right] \cup\left[\frac{3+a_{1}+a_{2}}{4}, 1\right] .
\end{aligned}
$$

For the first set in C_{2}, we can throw away $\left(\frac{1-a_{1}-a_{2}-a_{3}}{8}, \frac{1-a_{1}-a_{2}+a_{3}}{8}\right)$. For the second, throw away $\left(\frac{a_{2}+3-3 a_{1}-a_{3}}{8}, \frac{a_{2}+3-3 a_{1}+a_{3}}{8}\right)$; for the third, $\left(\frac{5+3 a_{1}-a_{2}-a_{3}}{8}, \frac{5+3 a_{1}-a_{2}+a_{3}}{8}\right)$; and for the fourth, $\left(\frac{3+a_{1}+a_{2}+4-a_{3}}{8}, \frac{3+a_{1}+a_{2}+4+a_{3}}{8}\right)$. This gives us

$$
\begin{aligned}
C_{3}= & {\left[0, \frac{1-a_{1}-a_{2}-a_{3}}{8}\right] \cup\left[\frac{1-a_{1}-a_{2}+a_{3}}{8}, \frac{2-2 a_{1}-2 a_{2}}{8}\right] \cup } \\
& {\left[\frac{1-a_{1}+a_{2}}{4}, \frac{3-3 a_{1}+a_{2}-a_{3}}{8}\right] \cup\left[\frac{3-3 a_{1}+a_{2}+a_{3}}{8}, \frac{1-a_{1}}{2}\right] \cup } \\
& {\left[\frac{2+2 a_{1}}{4}, \frac{5+3 a_{1}-a_{2}-a_{3}}{8}\right] \cup\left[\frac{5+3 a_{1}-a_{2}+a_{3}}{8}, \frac{3+a_{1}-a_{2}}{4}\right] \cup } \\
& {\left[\frac{3+a_{1}+a_{2}}{4}, \frac{3+a_{1}+a_{2}+4-a_{3}}{8}\right] \cup\left[\frac{3+a_{1}+a_{2}+4+a_{3}}{8}, 1\right] }
\end{aligned}
$$

Continuing this way, we observe that we can throw away intervals of total length a_{n} at the n-th step. Since $[0,1]$ is the disjoint union of all these open sets and the intersections of C_{n}, we get that

$$
1=\mathfrak{m}_{1}(C)+\sum_{n=1}^{\infty} a_{n}
$$

or that $\mathfrak{m}_{1}(C)=x$.
In this construction, we note that C is countable intersection of finite union of closed sets C_{n}. Thus, C is closed so that C^{c} is open. Since $[0,1]=C \cup C^{c}$ and $\partial C^{c}=C l\left(C^{c}\right)-\operatorname{Int}\left(C^{c}\right)=C l\left(C^{c}\right)-C^{c}=C l\left(C^{c}\right) \cap C=(C \backslash\{0,1\}) \cap$ $C=C \backslash\{0,1\}$. Thus, $\mathfrak{m}_{1}\left(\partial C^{c}\right)=\mathfrak{m}_{1}(C)-\mathfrak{m}_{1}(\{0,1\})=\mathfrak{m}_{1}(C)$. The crucial point here is realizing that $C l\left(C^{c}\right)=C \backslash\{0,1\}$ and this is because for each n, $\partial C_{n} \backslash\{0,1\}=C l\left(I_{n}\right)$ where I_{n} is the disjoint union of the open sets $I_{k}^{(n)}$ for which $\mathfrak{m}_{1}\left(I_{n}\right)=a_{n}$.

2 Functions on Measure Spaces

2.1 Measurable Functions

Let $\left(X, \mathfrak{A}_{X}, \mu_{X}\right),\left(Y, \mathfrak{A}_{Y}, \mu_{Y}\right)$ be a measure space and let $f: X \longrightarrow Y$ be a function. f is said to be a measurable function (with respect to \mathfrak{A}) if the pre-image of any μ_{Y}-measurable set is μ_{X}-measurable. Therefore, for $Y=\mathbb{R}$ and $\mathfrak{A}_{Y}=\mathfrak{M}_{1}, f$ is a measurable function if $f^{-1}([a, b)) \in \mathfrak{A}_{X}$ for all $a, b \in \mathbb{R}$.

This will be shortened to saying that f is μ_{X}-measurable or even that f is measurable, if the underlying measure space is clear. In probability theory, such an f is called a random variable.

We will only be concerned with real-valued functions.
Theorem 44 Let (X, \mathfrak{A}, μ) be a measure space and let $f: X \longrightarrow \mathbb{R}$ be a measurable function. The following are equivalent

1. $f^{-1}([a, b)) \in \mathfrak{A}$
2. $f^{-1}((a, \infty)) \in \mathfrak{A}$
3. $f^{-1}((a, b)) \in \mathfrak{A}$
4. $f^{-1}([a, b]) \in \mathfrak{A}$
5. $f^{-1}((-\infty, a)) \in \mathfrak{A}$
6. $f^{-1}((-\infty, a]) \in \mathfrak{A}$

Proof. $(1 \Longrightarrow 2)$
To see this, note that
$(a, \infty)=\bigcup_{n=1}^{\infty}(a, n)=\bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty}\left[a-\frac{1}{m}, n\right) \Longrightarrow f^{-1}((a, \infty))=\bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} f^{-1}\left(\left[a-\frac{1}{m}, n\right)\right)$
The set on the right hand-side is a countable intersection of a countable union of measurable sets, hence measurable. Therefore, $f^{-1}((a, \infty))$ is measurable. That is, $f^{-1}((a, \infty)) \in \mathfrak{A}$. The rest of the statements are verified in a similar manner. We only mention their decomposition.

$$
\begin{aligned}
& (2 \Longrightarrow 3) \\
& (a, b)=(a, \infty) \cap(b, \infty) \\
& (3 \Longrightarrow 4) \\
& {[a, b]=\bigcap_{n=1}^{\infty}\left(a+\frac{1}{n}, b+\frac{1}{n}\right)} \\
& (4 \Longrightarrow 5) \\
& (-\infty, a)=\bigcup_{n=1}^{\infty}(-n, a)=\bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty}[1 / m-n, a-1 / m] \\
& (5 \Longrightarrow 6) \\
& (-\infty, a]=\bigcap_{n=1}^{\infty}\left(-\infty, a+\frac{1}{n}\right) \\
& (6 \Longrightarrow 1) \\
& \text { We can use }(6 \Longrightarrow 5) \text { because }
\end{aligned}
$$

$$
(-\infty, a)=\bigcup_{n=1}^{\infty}\left(-\infty, a-\frac{1}{n}\right]
$$

Taking complement on both sides gives us

$$
[a, \infty)=\bigcap_{n=1}^{\infty}\left(a-\frac{1}{n}, \infty\right) .
$$

Thus, assuming 6 , we can have $(-\infty, b)$ for some $b>a$ and $(-\infty, b) \cap[a, \infty)=$ $[a, b) \in \mathfrak{A}$.

Example 45 Let (X, \mathfrak{A}, μ) be a measure space and let $f: X \longrightarrow \mathbb{R}$ be defined by

$$
f(x)=\chi_{E}(x)= \begin{cases}1 & \text { if } x \in E \\ 0 & \text { if } x \notin E\end{cases}
$$

In this case, f is measurable function if and only if $E \in \mathfrak{A}$: if f is measurable, then $f^{-1}(0, \infty)=E \in \mathfrak{A}$. Conversely, if E is measurable, then for any (a, b), if both 0 and 1 belong to (a, b), then $f^{-1}(a, b)=X$. If either belongs to (a, b), then $f^{-1}(a, b)=E^{c}$ or E, respectively. In either case, $f^{-1}(a, b) \in \mathfrak{A}$.

Problem 46 Let (X, \mathfrak{A}, μ) be a measure space, $E \in \mathfrak{A}$ and $\mu(E)>0$. Define $\mathfrak{A}_{E}:=\{A \subset E: A \in \mathfrak{A}\}$. Recall from Problem 11 that \mathfrak{A}_{E} is a σ-algebra and that $\left.\mu\right|_{E}$ is a measure on \mathfrak{A}_{E}.

1. Prove that if f is measurable on X, then the restriction of f to E is measurable on E
2. Assume $\mu(X \backslash E)=0$ and $f: X \longrightarrow \mathbb{R}$ is a function such that its restriction to E is measurable with respect to \mathfrak{A}_{E}. Is it true that f is measurable on X ? If no, what extra condition do we need for this to be true?

Solution 47 1. Let $\left.f\right|_{E}=g$ and $I \subset \mathbb{R}$ be an interval. Then, $g^{-1}(I)=$ $f^{-1}(I) \cap E$. Since $f^{-1}(I), E \in \mathfrak{A}$ (so that $f^{-1}(I) \cap E \in \mathfrak{A}$) and $f^{-1}(I) \cap E \subset E$, hence $f^{-1}(I) \cap E \in \mathfrak{A}_{E}$. That is, $g^{-1}(I) \in \mathfrak{A}_{E}$. Thus, g is measurable.
2. No. It may happen that $f^{-1}(A) \subset X \backslash E$ but $f^{-1}(A) \notin \mathfrak{A}$. For example, consider $X=\{1,2,3\}$ with $\mathfrak{A}=\{\varnothing,\{1,2\},\{3\},\{1,2,3\}\}$ and $E=\{3\}$. Define $\mu(\{1,2\})=0$ and $\mu(\{3\})=1$. Now define $f(x)=x$. Then, f restricted to E is a measurable function. However, $f^{-1}(1 / 2,3 / 2)=\{1\} \notin \mathfrak{A}$. For the extension of a measurable function to be measurable, we must have \mathfrak{A} complete. That is, when every subset of a null set (a set of measure zero) is measurable. If $\mathfrak{m}_{1}(X \backslash E)=0$, then every subset of $X \backslash E$ is of measure zero and not included in \mathfrak{A}_{E}. Now, extend f by letting $f(x) \in f(E)^{c}$ if $x \in X \backslash E$. Then, either $f^{-1}(a, b) \subset E$ or $f^{-1}(a, b) \subset X \backslash E$. In the former case, $f^{-1}(a, b) \in \mathfrak{A}_{E} \subset \mathfrak{A}$ so that f is measurable. In the latter, $\mathfrak{m}_{1}\left(f^{-1}(a, b)\right)=0$ so that $f^{-1}(a, b) \in \mathfrak{A}$, making f again measurable.

When is the composition of the two functions measurable? Continuous functions are always measurable so that gives us a lot but the following lemma shows we can generalise this a bit.

Lemma 48 Let X be a topological space, $F: X \longrightarrow \mathbb{R}^{p}$ and $g: F(X) \longrightarrow \mathbb{R}$ be functions. If g is continuous and components of F are measurable, then $f=g \circ F$ is measurable.

Proof. Let

$$
f^{-1}((a, \infty))=\{x: f(x) \in(a, \infty)\}=\left\{x: F(x) \in g^{-1}(a, \infty)\right\}
$$

Then, $g^{-1}(a, \infty)$ is relatively open in $F(X)$. Thus, there exists an open set $O \subset \mathbb{R}^{p}$ such that $O \cap F(X)=g^{-1}(a, \infty)$. Since O is open, we can cover O by disjoint, open (even half-open work) rectangles $\left\{R_{i}: i \in \mathbb{N}\right\}$ in \mathbb{R}^{p}. Thus,

$$
\begin{aligned}
f^{-1}(a, \infty) & =\{F(x) \in F(X) \cap O\} \\
& =\left\{F(x) \in F(X) \cap \bigcup_{i=1}^{\infty} R_{i}\right\} \\
& =\left\{x \in F^{-1}\left(\bigcup_{i=1}^{\infty} R_{i}\right)\right\} \\
& =\bigcup_{i=1}^{\infty}\left\{x \in F^{-1}\left(R_{i}\right)\right\}
\end{aligned}
$$

Let us look at the individual pre-image of a rectangle, i.e. at $\left\{x \in F^{-1}\left(R_{i}\right)\right\}$. Since $R_{i}=I_{1}^{i} \times \ldots \times I_{p}^{i}$ and $F=\left(\varphi_{1}, \ldots, \varphi_{p}\right)$, with each component measurable by hypothesis, then $x \in F^{-1}\left(R_{i}\right) \Longleftrightarrow x \in \varphi_{k}^{-1}\left(I_{k}\right)$ for each k so that

$$
x \in \bigcap_{k=1}^{p} \varphi_{k}^{-1}\left(I_{k}\right) \Longrightarrow f^{-1}((a, \infty))=\bigcap_{k=1}^{p} \varphi_{k}^{-1}\left(I_{k}\right)
$$

Thus, $f^{-1}((a, \infty)) \in \mathfrak{A}$.
Corollary 49 If f, g are measurable functions, then $f+g, \alpha f, f . g,|f|, \max (f, g)$ and $\min (f, g)$ are measurable.

Proof. Let f and g be two measurable functions defined on the same domain, X be a topological space, $F: X \longrightarrow \mathbb{R}^{2}$ defined by $F(x)=(f(x), g(x))$, $A: F(X) \times F(X) \longrightarrow \mathbb{R}$ defined by $A(x, y)=x+y, P: F(X) \times F(X) \longrightarrow \mathbb{R}$ defined by $P(x, y)=x y, G: X \longrightarrow \mathbb{R}$ defined by $G(x)=f(x), S: F(X) \longrightarrow$ \mathbb{R} defined by $S(x)=\alpha x, M: F(X) \longrightarrow \mathbb{R}$ defined by $M(x)=|x|, M_{\mathrm{x}}:$ $F(X) \times F(X) \longrightarrow \mathbb{R}^{2}$ defined by $M_{\mathrm{x}}(x, y)=\max (f(x), g(y))$ and $M_{\mathrm{n}}:$ $F(X) \times F(X) \longrightarrow \mathbb{R}^{2}$ defined by $M_{\mathrm{n}}(x, y)=\min (f(x), g(y))$. Then, F and G have measurable functions as components and $A, P, S, M, M_{\mathrm{x}}$ and M_{n} are continuous functions. By above lemma, $A \circ F=f+g, P \circ F=f . g, S \circ G=\alpha f$, $M \circ G=|f|, M_{\mathrm{n}} \circ F=\min (f, g)$ and $M_{\mathrm{x}} \circ F=\max (f, g)$ are all measurable.

Theorem 50 Let $\left\{f_{n}: n \in \mathbb{N}\right\}$ be a sequence of measurable functions. Then, the following are measurable:

$$
\inf _{n \in \mathbb{N}} f_{n}(x) ; \sup _{n \in \mathbb{N}} f_{n}(x) ; \lim _{N \rightarrow \infty} \inf _{n \geq N} f_{n}(x) \text { and } \lim _{N \rightarrow \infty} \sup _{n \geq N} f_{n}(x)
$$

are all measurable.
Proof. First, let us call

$$
f(x)=\sup _{n \in \mathbb{N}} f_{n}(x)
$$

Consider,

$$
f^{-1}((-\infty, a))=\{x: f(x)<a\}=\left\{x: \sup _{n} f_{n}(x)<a\right\}
$$

Thus, the set becomes

$$
\left\{x: f_{i}(x)<a, \forall i \in \mathbb{N}\right\}=\bigcap_{i=1}^{\infty}\left\{x: f_{i}(x)<a\right\}
$$

Now, $\left\{x: f_{i}(x)<a\right\}=f_{i}^{-1}((-\infty, a))$ is measurable, so we must have

$$
\bigcap_{i=1}^{\infty}\left\{x: f_{i}(x)<a\right\} \in \mathfrak{A}
$$

Thus, $f^{-1}((-\infty, a))$ is a measurable set and so f is a measurable function. Similarly, let

$$
g(x)=\inf _{n \in \mathbb{N}} f_{n}(x)
$$

Consider the set

$$
\begin{aligned}
g^{-1}((a, \infty)) & =\{x: g(x)>a\}=\left\{x: \inf _{n \in \mathbb{N}} f_{n}(x)>a\right\} \\
& =\left\{x: f_{i}(x)>a, \forall i \in \mathbb{N}\right\}=\bigcap_{i=1}^{\infty}\left\{x: f_{i}(x)>a\right\}
\end{aligned}
$$

Since $\left\{x: f_{i}(x)\right\}=f_{i}^{-1}((a, \infty))$ is measurable, we must have

$$
\bigcap_{i=1}^{\infty}\left\{x: f_{i}(x)>a\right\} \in \mathfrak{A}
$$

Thus, $g^{-1}((a, \infty))$ is a measurable set so that

$$
g=\inf _{n \in \mathbb{N}} f_{n}
$$

is a measurable function. Since

$$
\inf _{n \geq N} f_{n}(x)
$$

is an increasing sequence, we can have

$$
\lim _{N \rightarrow \infty} \inf _{n \geq N} f_{n}(x)=\sup _{N} \inf _{n \geq N} f_{n}(x)
$$

Since $f_{i}(x)$ is measurable for each i, then

$$
g_{N}(x)=\inf _{n \geq N} f_{n}(x)
$$

is measurable so that

$$
\sup _{N \in \mathbb{N}} g_{N}(x)
$$

is measurable. Now, recall that

$$
\lim _{N \rightarrow \infty} \sup _{n \geq N} f_{n}(x)=\inf _{N \geq 0} \sup _{n \geq N} f_{n}(x)
$$

Then, $f_{n}(x)$ is measurable

$$
\begin{aligned}
& \Longrightarrow \sup _{n \geq N} f_{n}(x) \text { is measurable } \\
& \Longrightarrow \inf _{N \geq 0} \sup _{n \geq N} f_{n}(x) \text { is measurable }
\end{aligned}
$$

Corollary 51 If $\left\{f_{n}: n \in \mathbb{N}\right\}$ is a sequence of measurable functions, and $f_{n} \longrightarrow$ f pointwise (i.e. $f_{n}(x) \longrightarrow f(x)$ for every $x \in X$), then $f(x)$ is measurable.
Proof. Since $f_{n}(x) \longrightarrow f(x)$, we have

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{N \rightarrow \infty} \sup _{n \geq N} f_{n}(x)=\lim _{N \rightarrow \infty} \inf _{n \geq N} f_{n}(x)
$$

The latter two are measurable.
What if $f_{n}(x) \longrightarrow f(x)$ almost everywhere? Under certain conditions, $f(x)$ is measurable:

Problem 52 Let $\left\{f_{n}: n \in \mathbb{N}\right\}$ be a sequence of real-valued measurable functions on X. For every natural n, define

$$
E_{n}:=\left\{x \in X:\left|f_{n}(x)-f_{n+1}(x)\right|>2^{-n}\right\}
$$

Show that if $\mu\left(E_{n}\right)<2^{-n}$ for every n, then f_{n} is pointwise convergent almost everywhere on X.

Solution 53 Since $\mu\left(E_{n}\right)<2^{-n}$ for every n, we have a family of measurable sets $\left\{E_{n}: n \in \mathbb{N}\right\}$ and their union has finite measure,

$$
\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1<\infty
$$

Then, by Borel-Cantelli Lemma, almost every $x \in X$ belongs to at most finitely many E_{n} 's. In other words, almost no $x \in X$ belongs to infinitely many E_{n} 's. By definition of E_{n}, f_{n} does not converge pointwise on E_{n} since for $\epsilon=2^{-n}$, there exists no N such that $\left|f_{n}(x)-f_{n+1}(x)\right|<2^{-n}$ for $N \geq n$. Thus, for almost every $x \in X, f_{n}$ is not pointwise convergent on at most finitely many E_{n} 's, which means that f_{n} is pointwise convergent almost everywhere.

2.2 Simple Functions

Let us now approximate! For measurable functions, there are many canonical ways that work but the one with a simple function is what we will study.

Definition 54 function $f: X \longrightarrow \mathbb{R}$ is called simple if there exist measurable sets E_{1}, \ldots, E_{n} such that

$$
f(x)=\sum_{j=1}^{n} c_{j} \cdot \chi_{E_{J}}(x)
$$

where c_{j} are scalars.
These are also called step functions. The measurable sets are not required to be disjoint. These are called simple because they're easy to integrate.

Problem 55 Show that a sum, a product, a min and a max of two simple functions is a simple function.

Solution 56 Let $f: X \longrightarrow \mathbb{R}$ and $g: X \longrightarrow \mathbb{R}$ be simple. Then, \exists measurable sets E_{1}, \ldots, E_{n} and F_{1}, \ldots, F_{m} such that

$$
f=\sum_{j=1}^{n} c_{j} \cdot \chi_{E_{j}} \text { and } g=\sum_{i=1}^{m} d_{i} \cdot \chi_{F_{i}}
$$

where $E_{j}=\left\{x \in X: f(x)=c_{j}\right\}$ and $F_{i}=\left\{x \in X: g(x)=d_{i}\right\}$. We can assume that $c_{i} \neq c_{j}$ for $i \neq j$ so that $E_{i} \neq E_{j}$. Similarly for g.

Since the intersection of measurable sets is measurable, we have $E_{j} \cap F_{i}$ is measurable for $1 \leq j \leq n$ and $1 \leq k \leq m$.

Recall that the domain for the sum and product of two functions is the intersection of the domains. Also recall that $\chi_{E_{i} \cap F_{j}}=\chi_{E_{i}}+\chi_{F_{j}}-\chi_{E_{i}} \chi_{F_{j}}$. Then, if we let $c_{k}+d_{k}=a_{k}$ and $c_{k}=0$ and $E_{k}=\varnothing$ for $k>n=\min \{m, n\}$ or $d_{k}=0$ and $F_{k}=\varnothing$ for $k>m=\min \{m, n\}$, then
$f+g=\sum_{i=1}^{\max \{m, n\}} a_{i} \chi_{E_{i} \cap F_{i}}=\sum_{i=1}^{\max \{m, n\}} a_{i} \chi_{E_{i}}+\sum_{i=1}^{\max \{m, n\}} a_{i} \chi_{F_{i}}-\sum_{i=1}^{\max \{m, n\}} a_{i} \chi_{E_{i}} \chi_{F_{i}}<\infty$
Moreover

$$
\max (f, g)=\sum_{i=1}^{\max \{m, n\}} \max \left(c_{i}, d_{i}\right) \chi_{E_{i} \cap F_{j}}
$$

and,

$$
\min (f, g)=\sum_{i=1}^{\max \{m, n\}} \min \left(c_{i}, d_{i}\right) \chi_{E_{i} \cap F_{j}}
$$

are both finite so that the sum, product, min and maximum of simple functions is simple. Similarly, for $f . g$ where $(f . g)(x)=f(x) g(x)$, if we let $c_{k} d_{k}=b_{k}$
and $c_{k}=1$ and $E_{k}=\varnothing$ for $k>n=\min \{m, n\}$ or $d_{k}=1$ and $F_{k}=\varnothing$ for $k>m=\min \{m, n\}$, then

$$
f . g=\sum_{i=1}^{\max \{m, n\}} b_{i} \chi_{E_{i} \cap F_{j}}<\infty
$$

2.2.1 Approximation of Measurable Functions

Lemma 57 Assume that $f: X \longrightarrow \mathbb{R}$ is measurable and bounded (i.e. $|f(x)| \leq$ M for every $x \in X$). Then, $\forall \epsilon>0, \exists$ simple φ, ψ with $\varphi \leq f \leq \psi$ such that $|\varphi(x)-\psi(x)|<\epsilon \forall x$

Proof. Let $\epsilon>0$ and $\forall x$, we know that $f(x) \in[-M, M+1)$. Denote $c=-M$ and $d=M+1$. Take $y_{0}=c<y_{1}<\ldots<y_{n}=d$ such that $y_{k}-y_{k-1}<\epsilon$ for each k. Then, each $X_{k}=f^{-1}\left[y_{k-1}, y_{k}\right)$ is measurable. Note that X_{k} 's are disjoint. Define

$$
\varphi(x)=\sum_{k=1}^{n} y_{k-1} \cdot \chi_{X_{k}}(x)
$$

and

$$
\psi(x)=\sum_{k=1}^{n} y_{k} \cdot \chi_{X_{k}}(x)
$$

Since $f(x) \in[c, d), \exists!k$ such that $y_{k-1} \leq f(x) \leq y_{k}$. That is, if $x \in X_{k}$, then $\varphi(x)=y_{k-1} \leq f(x) \leq y_{k}=\psi(x)$. Thus, $\varphi \leq f \leq \psi$. Moreover, since $\left|y_{k-1}-y_{k}\right|<\epsilon$, we must have $|\varphi(x)-\psi(x)|<\epsilon \forall x$.

Theorem 58 Let $f: X \longrightarrow \mathbb{R}$ be measurable. Then, there is a sequence $\left\{\psi_{n}\right\}$ of simple functions such that

1. $\left|\psi_{n}(x)\right| \leq|f(x)|$
2. $\psi_{n}(x) \rightarrow f(x)$ for every $x \in X$
3. If $f \geq 0$, then $\psi_{n}(x) \nearrow f(x)$. That is, for a fixed x, the sequence ψ_{n} is increasing and converges to $f(x)$.

Proof. Let $E_{n}=\{x \in X:|f(x)| \leq n\}$. Then, E_{n} is measurable. By Lemma 57, $\exists g_{n}, h_{n}$ in E_{n} with $g_{n} \geq f \geq h_{n}$ and $\left|g_{n}-h_{n}\right|<\frac{1}{n}$. For $x \in E_{n}$, define

$$
\psi_{n}(x)=\left\{\begin{array}{cc}
0 & f(x)=0 \\
\max \left(h_{n}(x), 0\right) & f(x)>0 \\
\min \left(g_{n}(x), 0\right) & f(x)<0
\end{array}\right.
$$

and for $x \notin E_{n}$, set $\psi_{n}(x)=0$. This is a simple function since it has finitely many values and is absorbed in the characteristic function. The values of $\psi_{n}(x)$ are obtained by measurable functions; thus ψ_{n} is measurable, for each n.

Now we prove (1). Fix an $x \in X$. If $x \in E_{n}$ and $f(x)>0$, then $h_{n}(x)>0$ so that $h_{n} \leq f \Longrightarrow\left|\psi_{n}(x)\right| \leq|f(x)|$. If $x \in E_{n}$ and $f(x)<0$, then $g_{n}(x)<0$ so that $f \leq g_{n}<0 \Longrightarrow\left|\psi_{n}(x)\right| \leq|f(x)|$. In all other cases, $\psi_{n}(x)=0$ so $\left|\psi_{n}(x)\right| \leq|f(x)|$.

For (2), there are three cases to consider.
If $0<f(x)<\infty$ for every x, then $\exists N$ such that $|f(x)| \leq N$ so that for $n \geq N$ and $x \in E_{n}, 0 \leq \psi_{n}(x)=\max \left(h_{n}(x), 0\right) \leq|f(x)|$ so that from $0 \leq h_{n}(x)=\psi_{n}(x) \leq f(x) \leq g_{n}(x)$ and $0 \leq g_{n}(x)-h_{n}(x)<\frac{1}{n}$, we get $0 \leq$ $f(x)-\psi_{n}(x) \leq g(x)-h_{n}(x)<\frac{1}{n}$. Letting $n \rightarrow \infty$, we get $f(x)-\psi_{n}(x) \rightarrow 0$ so that $\psi_{n}(x) \rightarrow f(x)$.

If $0>f(x)>-\infty$ for every x, then $\exists N$ such that $|f(x)| \leq N$ so that for $n \geq N$ and $x \in E_{n}, 0 \leq \psi_{n}(x)=\min \left(g_{n}(x), 0\right) \leq|f(x)|$ so that $0 \leq$ $f(x)-\psi_{n}(x) \leq f(x)-g_{n}(x)<\frac{1}{n}$. Thus, $f(x)-\psi_{n}(x) \rightarrow 0$.

If $f(x)= \pm \infty$, then define

$$
\widetilde{\psi}_{n}(x)=\left\{\begin{array}{cc}
\psi_{n}(x) & x \in E_{n} \\
n & f(x)>n \\
-n & f(x)<-n
\end{array}\right.
$$

Then, by definition,

$$
\left|\widetilde{\psi}_{n}(x)\right| \leq|f(x)|
$$

and $\widetilde{\psi}_{n} \rightarrow f$.
For (3), we need special consideration since the sequence ψ_{n} is not necessarily increasing. This is because the approximations h_{n} and g_{n}, as constructed in Lemma 57, rely on the nature of f itself. Thus, h_{n} 's and g_{n} 's are not necessarily increasing since f is not. We get our way around: if $f \geq 0$, then define

$$
\bar{\psi}_{n}(x)=\max _{1 \leq j \leq n} \widetilde{\psi}_{j}(x)
$$

Clearly, $\bar{\psi}_{n}$ is an increasing sequence of functions. Moreover, since

$$
\left|\widetilde{\psi}_{n}(x)\right| \leq|f(x)|
$$

for each n, we must have

$$
\left|\bar{\psi}_{n}(x)\right| \leq|f(x)|
$$

Finally, it is easy to see that $0 \leq f(x)-\bar{\psi}_{n}(x) \leq f(x)-\widetilde{\psi}_{n}(x) \rightarrow 0$.
Since h_{n} and g_{n} are simple, then so is ψ_{n}, and so is $\widetilde{\psi}_{j}$, and, therefore, $\bar{\psi}_{n}$ is also a simple function for each n.

Lemma 59 Let $f: \mathbb{R}^{p} \longrightarrow \mathbb{R}$ be a (measurable) function. Let $E \in \mathfrak{M}_{p}$, $\mathfrak{m}_{p}(E)<\infty$. Assume that $\left\{f_{n}: n \in \mathbb{N}\right\}$ is a sequence of measurable functions with $f_{n}(x) \rightarrow f(x) \forall x \in E$ (i.e. pointwise). Then, $\forall \epsilon>0, \delta>0$, there exists $A \subset E$ with $A \in \mathfrak{M}_{p}$ such that $\left|f_{n}-f\right|<\epsilon$ on $A \forall n \geq N$ and $\mathfrak{m}_{p}(E \backslash A)<\delta$
A is not necessarily closed. Hence it differs from what we have established in Theorem 35. That is, the existence of a closed set A such that $\mathfrak{m}_{p}(E \backslash A)<\delta$. Although this doesn't necessarily matter, as will be clear in the proof.
Proof. Note that f_{n} is measurable and

$$
f=\lim _{n \rightarrow \infty} f_{n}=\lim _{N \rightarrow \infty} \sup _{n \geq N} f_{n}=\lim _{n \rightarrow \infty} \inf _{n \geq N} f_{n}
$$

so that f is also measurable, hence the brackets in the hypothesis. Define

$$
E_{n}=\left\{x \in \mathbb{R}^{p}:\left|f(x)-f_{k}(x)\right|<\epsilon \forall k \geq n\right\}
$$

This set is measurable because both f_{n} and f are measurable. That is, $E_{n} \in \mathfrak{M}_{p}$. Note that $E_{n} \subset E_{n+1}$ for each $n \geq 1$. Define

$$
\bigcup_{j=1}^{\infty} E_{j}=E
$$

so that

$$
\mathfrak{m}_{p}(E)=\lim _{n \rightarrow \infty} \mathfrak{m}_{p}\left(E_{n}\right)
$$

Hence $\exists N$ such that $\forall n>N, \mathfrak{m}_{p}(E)<\mathfrak{m}_{p}\left(E_{n}\right)+\delta$ for $n \geq N$ and, so, $\mathfrak{m}_{p}\left(E \backslash E_{n}\right)<\delta$ for $n \geq N$. Setting $A=E_{N+1}$ establishes the lemma.

Theorem 60 (Egoroff) Let $f: \mathbb{R}^{p} \longrightarrow \mathbb{R}$ be a measurable function. Let $E \in \mathfrak{M}_{p}, \mathfrak{m}_{p}(E)<\infty$. Assume that $\left\{f_{n}: n \in \mathbb{N}\right\}$ is a sequence of measurable functions such that $\forall x \in E, f_{n}(x) \rightarrow f(x)$ pointwise. Then, \exists a closed $F \subset E$ with $\mathfrak{m}_{p}(E \backslash F)<\epsilon$ and $f_{n} \rightarrow f$ uniformly on F.

This theorem holds in more generality for measure spaces. Thus, up to a measure ϵ, pointwise convergence implies uniform convergence.
Proof. By Lemma 59, for a fixed n, we can find $A_{n} \subset E$ and $N(n)$ such that $\mathfrak{m}_{p}\left(E \backslash A_{n}\right)<\frac{\varepsilon}{2^{n+1}}$ for $n \geq N$ so that $\forall k \geq N(n),\left|f-f_{k}\right|<\frac{1}{n}$ on A_{n}. Now let

$$
A=\bigcap_{j=1}^{\infty} A_{j}
$$

A may not be closed! Then,

$$
\begin{aligned}
\mathfrak{m}_{p}(E \backslash A) & =\mathfrak{m}_{p}\left(\bigcup_{n=1}^{\infty}\left(E \backslash A_{n}\right)\right) \\
& =\sum_{n=1}^{\infty} \mathfrak{m}_{p}\left(E \backslash A_{n}\right) \\
& <\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2}
\end{aligned}
$$

Our goal now is to show that $f_{n} \rightarrow f$ on A uniformly. This is written as $f_{n} \rightrightarrows f$ on A. That is, $\forall \sigma>0, \exists M$ such that $\forall k>M,\left|f_{k}(x)-f(x)\right|<\sigma$ for every $x \in A$. Take n such that $\frac{1}{n}<\sigma$. Then, for every $x \in A_{n}$, we have $\left|f_{k}(x)-f(x)\right|<\frac{1}{n}<\sigma$ as soon as $k \geq N(n)=N(\sigma)$. Let $M=N(n)=$ $N(\sigma)$. Then, for a fixed $\sigma>0$, we found an M such that $\forall k \geq M, \forall x \in A$, we have $\left|f_{k}(x)-f(x)\right|<\sigma$, i.e. $f_{n} \rightrightarrows f$.

Now, recall that $\mathfrak{m}_{p}(E \backslash A)<\frac{\varepsilon}{2}$. By the Regularity of the Lebesgue Measure (i.e. $\mathfrak{m}_{p}(E \backslash A)=\sup \left\{\mathfrak{m}_{p}(K): K\right.$ is compact and $\left.K \subset E \backslash A\right\}$) we can find a closed $F \subset A$ with $\mathfrak{m}_{p}(A \backslash F)<\frac{\varepsilon}{2}$. Then, $\mathfrak{m}_{p}(E \backslash F)<\varepsilon$.
Problem 61 Show that the conclusion of Egoroff's Theorem can fail if we drop the assumption that the domain has finite measure.
Solution 62 Consider the sequence of indicator functions $\chi_{[-n, n]}:=f_{n}$ defined on \mathbb{R}. Then, for $x \in \mathbb{R}$,

$$
\lim _{N \rightarrow \infty} \sup _{n \geq N} f_{n}=\lim _{n \rightarrow \infty} \inf _{n \geq N} f_{n}=1
$$

so that f_{n} converges to the constant function $\mathbf{1}$. That is, to a function $\mathbf{1}: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\mathbf{1}(x)=1$ for all x, pointwise. However, assume that $f_{n} \rightrightarrows \mathbf{1}$ on some closed subset F of \mathbb{R}. Choose $\epsilon=1$, then for $k \in \mathbb{N},\left|\mathbf{1}(x)-f_{k}(x)\right|<1$ holds when $f_{k}(x)=1$ so that, for the N we should be able to find, given our $\epsilon=1$, for $n \geq N$,

$$
E_{n}=\left\{x \in \mathbb{R}:\left|\mathbf{1}-f_{k}(x)\right|<1 \forall k \geq n\right\}=\bigcap_{k=N}^{\infty}[-k, k]=[-N, N]=F
$$

However, $\mathfrak{m}_{1}(\mathbb{R} \backslash F)=\mathfrak{m}_{1}((-\infty, N) \cup(N, \infty)) \nless 1$.
Lemma 63 Let $E \subset \mathbb{R}^{p}$ and $f: E \longrightarrow \mathbb{R}$ be a simple function. Then, $\forall \epsilon>$ $0, \exists$ a continuous function $g: \mathbb{R}^{p} \longrightarrow \mathbb{R}$ and a closed set $F \subset E$ such that $\mathfrak{m}_{p}(E \backslash F)<\epsilon, f(x)=g(x)$ if $x \in F$

Proof. Let

$$
f(x)=\sum_{k=1}^{n} a_{k} \chi_{E_{k}}(x)
$$

where we can assume WLOG that E_{k} are disjoint. Then, we can find a closed set $F_{k} \subset E_{k}$ such that $\mathfrak{m}_{p}\left(E_{k} \backslash F_{k}\right)<\frac{\epsilon}{2^{k}}$. Set

$$
F=\bigcup_{k=1}^{n} F_{k}
$$

Note the finite union: this ensures that F is closed. Moreover, $\mathfrak{m}_{p}(E \backslash F)<\epsilon$. Set $g(x)=a_{k}$ when $x \in F_{k} . g$ is defined on F and it is continuous on F : if $x \in F$, then $\exists!k^{\prime}$ such that $x \in F_{k^{\prime}}$. That is, some neighborhood of x does not intersect F_{j} for $j \neq k^{\prime}$. Now, the continuity of g is easy to prove. We can now extend g to a continuous function on \mathbb{R}^{p} by setting constant values for the "end points" of F.

Problem 64 Define

$$
f(x):=\left\{\begin{array}{cc}
2 & \text { if } x \in[0,1) \\
5 & \text { if } x \in[1,2) \\
-1 & \text { if } x \in[3,4) \\
0 & \text { otherwise }
\end{array}\right.
$$

For every $\epsilon>0$, construct a continuous function $\varphi_{\epsilon}: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\mathfrak{m}_{1}\left(\left\{x: f(x) \neq \varphi_{\epsilon}(x)\right\}\right)<\epsilon$.

Solution 65 Let $E_{1}=[0,1), E_{2}=[1,2)$ and $E_{3}=[3,4)$ and $E_{4}=[4, \infty)$. Then, $f=2 \chi_{E_{1}}+5 \chi_{E_{2}}-\chi_{E_{3}}+0 \chi_{E_{4}}$ is simple and, therefore, measurable. Thus, $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a simple function, so we are guaranteed the existence of such a continuous function by Lemma 63. We can choose the closed sets F_{k} to be
$F_{1}=\left[\frac{\epsilon}{4}, 1-\frac{\epsilon}{4}\right], F_{2}=\left[1,2-\frac{\epsilon}{2^{2}}\right], F_{3}=\left[3+\frac{\epsilon}{2^{4}}, 4-\frac{\epsilon}{2^{4}}\right]$ and $F_{4}=\left[4+\frac{\epsilon}{2^{4}}, \infty\right)$
Then, for $F=F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$ and $E=E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$,

$$
\mathfrak{m}_{1}(E \backslash F)=\frac{\epsilon}{2}+\frac{\epsilon}{2^{2}}+\frac{\epsilon}{2^{3}}+\frac{\epsilon}{2^{4}}=\frac{15}{16} \epsilon<\epsilon
$$

Now, define $\varphi_{\epsilon}: \mathbb{R} \longrightarrow \mathbb{R}$

$$
\varphi_{\epsilon}(x)=\left\{\begin{array}{cc}
\left(\frac{8}{\epsilon}-2\right) x & \text { if } x \in\left(0, \frac{\epsilon}{4}\right) \\
2 & \text { if } x \in F_{1} \\
\frac{12}{\epsilon} x+2 & \text { if } x \in\left(1-\frac{\epsilon}{4}, 1\right) \\
5 & \text { if } x \in F_{2} \\
\frac{40}{\epsilon}-\frac{20}{\epsilon} x & \text { if } x \in\left(2-\frac{\epsilon}{4}, 2\right) \\
\frac{48}{\epsilon}-\frac{16}{\epsilon} x & \text { if } x \in\left(3,3+\frac{\epsilon}{16}\right) \\
-1 & \text { if } x \in F_{3} \\
\frac{8}{\epsilon} x-\frac{1}{2}-\frac{32}{\epsilon} & \text { if } x \in\left(4-\frac{\epsilon}{16}, 4+\frac{\epsilon}{16}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

By construction, φ_{ϵ} is continuous and $E \backslash F=\left\{x: f(x) \neq \varphi_{\epsilon}(x)\right\}$
Theorem 66 (Lusin) Let $E \subset \mathbb{R}^{p}$ and $f: E \longrightarrow \mathbb{R}$ be a measurable function. Then, $\forall \epsilon>0, \exists$ a continuous function $g: \mathbb{R}^{p} \longrightarrow \mathbb{R}$ and a closed set $F \subset E$ such that $\mathfrak{m}_{p}(E \backslash F)<\epsilon, f(x)=g(x) \forall x \in F$

That is, a measurable function can be approximated by a continuous function.
Proof. There are two cases to consider, with E having finite and infinite measure.

Assume that $\mathfrak{m}_{p}(E)<\infty$.
Since f is measurable, \exists a sequence of simple functions $\left\{\varphi_{n}: n \in \mathbb{N}\right\}$ on E such that $\varphi_{n} \rightarrow f$. As shown in Problem 64 and proved in Lemma 63, for each n, we can find a continuous function g_{n} such that $F_{n} \subset E$ is closed and

$$
\mathfrak{m}_{p}\left(E \backslash F_{n}\right)<\frac{\epsilon}{2^{n+1}}
$$

Note that $g_{n}=\varphi_{n}$ on F_{n}. By Egoroff, there is a closed $F_{0} \subset E$ where $\varphi_{n} \rightrightarrows f$ and

$$
\mathfrak{m}_{p}\left(E \backslash F_{0}\right)<\frac{\epsilon}{2}
$$

Now, let

$$
F=\bigcap_{n=0}^{\infty} F_{n}
$$

where F_{n} is closed and $\mathfrak{m}_{p}(E \backslash F)<\epsilon$. On F, we have $g_{n}(x) \stackrel{x \in F_{n}}{=} \varphi_{n}(x) \rightrightarrows$ $f(x)$. That is, on $F,\left\{g_{n}: n \in \mathbb{N}\right\}$ converges uniformly to f. Then, f is continuous on F. We can then set $g=\left.f\right|_{F}$. Then, g is continuous on F. We can now extend g to \mathbb{R}^{p}.

If $\mathfrak{m}_{p}(E)=\infty$, we can split E into boxes of side-length 1 . Let

$$
E=\bigcup_{i=0}^{\infty} B_{i}
$$

and let $E_{i}=E \cap B_{i}$. Then,

$$
E=\bigcup_{i=0}^{\infty} E_{i}
$$

and E_{i} for each i is measurable, $\mathfrak{m}_{1}\left(E_{i}\right) \leq 1$ and by Problem 46, f is measurable on E_{i} and, therefore, \exists a sequence of simple functions $\left\{\varphi_{n}: n \in \mathbb{N}\right\}$ on E_{i} such that $\varphi_{n} \rightarrow f$. Again, by Lemma 63, for each n, we can find a continuous function g_{n} such that $F_{n}^{(i)} \subset E_{i}$ is closed and

$$
\mathfrak{m}_{p}\left(E_{i} \backslash F_{n}^{(i)}\right)<\frac{\epsilon}{2^{i+n+1}}
$$

with $g_{n}=\varphi_{n}$ on $F_{n}^{(i)}$. By Egoroff, there is a closed $F_{0}^{(i)} \subset E_{i}$ where $\varphi_{n} \rightrightarrows f$ and

$$
\mathfrak{m}_{p}\left(E_{i} \backslash F_{0}^{(i)}\right)<\frac{\epsilon}{2^{i+1}}
$$

Now, let

$$
F^{(i)}=\bigcap_{n=0}^{\infty} F_{n}^{(i)}
$$

where $F_{n}^{(i)}$ is closed and $\mathfrak{m}_{p}\left(E_{i} \backslash F^{(i)}\right)<\frac{\epsilon}{2^{i+1}}$. On $F^{(i)}$, we have $g_{n}(x) \stackrel{x \in F_{n}^{(i)}}{=}$ $\varphi_{n}(x) \rightrightarrows f(x)$. That is, on $F^{(i)},\left\{g_{n}: n \in \mathbb{N}\right\}$ converges uniformly to f. Then, f is continuous on $F^{(i)}$. We can then set $g_{i}=\left.f\right|_{F^{(i)}}$. Then, g_{i} is continuous on $F^{(i)}$. Now let

$$
h(x)=\sum_{i=1}^{\infty} g_{i}(x) \chi_{F^{(i)}}(x) \text { and } F^{\prime}=\bigcup_{i=0}^{\infty} F^{(i)} \subset \bigcup_{i=0}^{\infty} E_{i}
$$

Then, $g=\left.f\right|_{F}$. This union, however, may not be closed but is, however, measurable. Thus, we can find a closed set $F \subset F^{\prime}$ and by Egoroff, a continuous function g such that $\mathfrak{m}_{1}\left(F^{\prime} \backslash F\right)<\epsilon / 2$ so that $\mathfrak{m}_{1}\left(E \backslash F^{\prime}\right)<\epsilon$ and $g(x)=h(x)$ on F.

3 Integration

3.1 Integral of Simple and Measurable Functions

The integral is naturally defined using simple functions over a set of finite measure. To do this, however, we need to ensure that the integral does not depend on the representation of the simple function:

Lemma 67 Let (X, \mathfrak{A}, μ) be a measure space and let $\varphi: X \longrightarrow \mathbb{R}$ be a simple function. Assume that

$$
\varphi(x)=\sum_{j=1}^{N} a_{j} \chi_{A_{j}}(x)=\sum_{k=1}^{M} b_{k} \chi_{B_{k}}(x)
$$

where $\left\{A_{j}: 1 \leq j \leq N\right\}$ and $\left\{B_{j}: 1 \leq j \leq M\right\}$ are both pair-wise disjoint and measurable, and that

$$
\bigcup_{j=0}^{N} A_{j}=X=\bigcup_{j=0}^{M} B_{j}
$$

Then, for every $E \in \mathfrak{A}$,

$$
\sum_{j=1}^{N} a_{j} \mu\left(A_{j} \cap E\right)=\sum_{k=1}^{M} b_{k} \mu\left(B_{k} \cap E\right)
$$

Proof. Note that $a_{j} \mu\left(A_{j} \cap E \cap B_{k}\right)=b_{k} \mu\left(B_{k} \cap E \cap A_{j}\right)$ for each j, k. This is because if A_{j} and B_{k} are disjoint, then we trivially have equality on both sides since we then have $0=0$. If $x \in A_{j} \cap B_{k}$, then let $\varphi(x)=c_{j}$. Since $x \in A_{j}$, we have $\varphi(x)=a_{j}$ and $\varphi(x)=b_{k}$ because $x \in B_{k}$. Thus, $c_{j}=b_{k}=a_{j}$. Now, $\forall k$,

$$
B_{k}=B_{k} \cap X=B_{k} \cap\left(\bigcup_{j=1}^{N} A_{j}\right)=\bigcup_{j=1}^{N}\left(A_{j} \cap B_{k}\right)
$$

and

$$
\begin{aligned}
\sum_{k=1}^{M} b_{k} \mu\left(B_{k} \cap E\right) & =\sum_{k=1}^{M} b_{k} \mu\left(E \cap \bigcup_{j=1}^{N}\left(A_{j} \cap B_{k}\right)\right)=\sum_{k=1}^{M} b_{k} \mu\left(\bigcup_{j=1}^{N}\left(E \cap A_{j} \cap B_{k}\right)\right) \\
& =\sum_{k=1}^{M} b_{k} \sum_{j=1}^{N} \mu\left(E \cap A_{j} \cap B_{k}\right)=\sum_{k=1}^{M} \sum_{j=1}^{N} b_{k} \mu\left(E \cap A_{j} \cap B_{k}\right) \\
& =\sum_{k=1}^{M} \sum_{j=1}^{N} a_{j} \mu\left(E \cap A_{j} \cap B_{k}\right)=\sum_{j=1}^{N} a_{j} \sum_{k=1}^{M} \mu\left(E \cap A_{j} \cap B_{k}\right) \\
& =\sum_{j=1}^{N} a_{j} \mu\left(\bigcup_{k=1}^{M}\left(E \cap A_{j} \cap B_{k}\right)\right)=\sum_{j=1}^{N} a_{j} \mu\left(E \cap \bigcup_{k=1}^{M}\left(A_{j} \cap B_{k}\right)\right) \\
& =\sum_{j=1}^{N} a_{j} \mu\left(E \cap\left(A_{j} \cap \bigcup_{k=1}^{M} B_{k}\right)\right)=\sum_{j=1}^{N} a_{j} \mu\left(E \cap\left(A_{j} \cap X\right)\right) \\
& =\sum_{j=1}^{N} a_{j} \mu\left(E \cap A_{j}\right)
\end{aligned}
$$

Now, assume that we have a simple, positive function φ, on X with

$$
\varphi(x)=\sum_{i=1}^{N} a_{i} \chi_{A_{i}}(x)
$$

where $\left\{A_{i}: 1 \leq i \leq N\right\}$ is pair-wise disjoint and measurable. Then for every $E \in \mathfrak{A}$, we define the integral of φ over E with respect to μ as follows:

$$
\int_{E} \varphi d \mu=\sum_{i=1}^{N} a_{j} \mu\left(A_{i} \cap E\right)
$$

Lemma 68 Let φ be a simple, non-negative function with

$$
\varphi(x)=\sum_{i=1}^{N} a_{i} \chi_{A_{i}}(x)
$$

Let μ be a measure and let $E \in \mathfrak{A}$. Then,

$$
\int_{E} \varphi d \mu \in[0, \infty]
$$

Proof. Since

$$
\int_{E} \varphi d \mu=\sum_{i=1}^{N} a_{j} \mu\left(A_{i} \cap E\right)
$$

and each $a_{j}>0$ by hypothesis ($\mu \geq 0$ by default)

Lemma 69 Let φ be a constant simple, non-negative function. That is, $\varphi(x)=$ $c \forall x \in E$ where $E \in \mathfrak{A}$. Let μ be a measure. Then,

$$
\int_{E} \varphi d \mu=c \mu(E)
$$

Proof. If $\varphi(x)=c$, then $\varphi(x)=c \chi_{E}$ so that

$$
\int_{E} \varphi d \mu=c \mu(E \cap E)=c \mu(E)
$$

Lemma 70 Let φ and ψ be simple, non-negative functions with

$$
\varphi(x)=\sum_{i=1}^{N} a_{i} \chi_{A_{i}}(x) \text { and } \psi(x)=\sum_{i=1}^{M} b_{i} \chi_{B_{i}}(x)
$$

Let μ be a measure, α, β be scalars and $E \in \mathfrak{A}$. Then,

$$
\int_{E}(\alpha \varphi+\beta \psi) d \mu=\alpha \int_{E} \varphi d \mu+\beta \int_{E} \psi d \mu
$$

Proof. The result will be proven in two steps: first, we will show that the sum gets distributed and later on, that the scalar product can be pulled out.

We may choose a finite, disjoint collection C_{i} such that

$$
\varphi(x)=\sum_{i=1}^{K} \alpha_{i} \chi_{C_{i}}(x) \text { and } \psi(x)=\sum_{i=1}^{K} \beta_{i} \chi_{C_{i}}(x)
$$

Then,

$$
(\varphi+\psi)(x)=\sum_{i=1}^{K}\left(\alpha_{i}+\beta_{i}\right) \chi_{C_{i}}(x)
$$

so that

$$
\begin{aligned}
\int_{E}(\varphi+\psi) d \mu & =\sum_{i=1}^{K}\left(\alpha_{i}+\beta_{i}\right) \mu\left(C_{i} \cap E\right) \\
& =\sum_{i=1}^{K} \alpha_{i} \mu\left(C_{i} \cap E\right)+\sum_{i=1}^{K} \beta_{i} \mu\left(C_{i} \cap E\right) \\
& =\int_{E} \varphi d \mu+\int_{E} \psi d \mu
\end{aligned}
$$

Now,

$$
\int_{E} \alpha \varphi d \mu=\sum_{i=1}^{K} \alpha\left(\alpha_{i} \mu\left(C_{i} \cap E\right)\right)=\alpha \sum_{i=1}^{K}\left(\alpha_{i} \mu\left(C_{i} \cap E\right)\right)=\alpha \int_{E} \varphi d \mu
$$

Combining these two facts readily allows for the required result.

Lemma 71 Let φ and ψ be simple, non-negative functions with

$$
\varphi(x)=\sum_{i=1}^{N} a_{i} \chi_{A_{i}}(x) \text { and } \psi(x)=\sum_{i=1}^{M} b_{i} \chi_{B_{i}}(x)
$$

Let μ be a measure, $\varphi \leq \psi$ and let $E \in \mathfrak{A}$. Then,

$$
\int_{E} \varphi d \mu \leq \int_{E} \psi d \mu
$$

Proof. Again, we may choose a finite, disjoint collection C_{i} such that

$$
\varphi(x)=\sum_{i=1}^{K} \alpha_{i} \chi_{C_{i}} \text { and } \psi(x)=\sum_{i=1}^{K} \beta_{i} \chi_{C_{i}}
$$

with $\alpha_{i} \leq \beta_{i}$ so that

$$
\int_{E} \varphi d \mu=\sum_{i=1}^{K} \alpha_{i} \mu\left(C_{i} \cap E\right) \leq \sum_{i=1}^{K} \beta_{i} \mu\left(C_{i} \cap E\right)=\int_{E} \psi d \mu
$$

Lemma 72 Let φ be a simple, non-negative function with

$$
\varphi(x)=\sum_{i=1}^{N} a_{i} \chi_{A_{i}}(x)
$$

Let μ be a measure and let $E \in \mathfrak{A}$. Then,

$$
\int_{E} \varphi d \mu=\int_{X} \varphi \chi_{E} d \mu
$$

Proof. Note that $\varphi \chi_{E}$ is simple and is equal to a_{j} on $E \cap A_{j}$ and 0 on E^{c}. Also, note that $E \cap A_{1}, E \cap A_{2}, \ldots, E \cap A_{k}, E^{c}$ form a partition of X. Then,

$$
\int_{X} \varphi \chi_{E} d \mu=\sum_{j=1}^{N} a_{j} \mu\left(A_{j} \cap E\right)+0 \mu\left(E^{c}\right)=\int_{E} \varphi d \mu+0=\int_{E} \varphi d \mu
$$

Lemma 73 Let φ be a simple, non-negative function with

$$
\varphi(x)=\sum_{i=1}^{N} a_{i} \chi_{A_{i}}
$$

Let μ be a measure and let $E, F \in \mathfrak{A}$ with $E \subset F$. Then,

$$
\int_{E} \varphi d \mu \leq \int_{F} \varphi d \mu
$$

Proof. Follows from Lemmas 71 and 72 because $\varphi \chi_{E} \leq \psi \chi_{F}$ on X.
Lemma 74 Let φ be a simple, non-negative function with

$$
\varphi(x)=\sum_{i=1}^{N} a_{i} \chi_{A_{i}}(x)
$$

Let μ be a measure and let $E \in \mathfrak{A}$. Then

$$
\int_{E} \varphi d \mu=\sup \left\{\int_{E} \psi d \mu: \psi \text { simple }, \psi \geq 0, \psi \leq \varphi \text { on } E\right\}
$$

Proof. By Lemma 71

$$
\int_{E} \psi d \mu \leq \int_{E} \varphi d \mu \forall 0 \leq \psi \leq \varphi
$$

hence

$$
\sup \left\{\int_{E} \psi d \mu: \psi \text { simple, } \psi \geq 0, \psi \leq \varphi \text { on } E\right\} \leq \int_{E} \varphi d \mu
$$

But $\varphi=\psi$ is a candidate, as well. Hence

$$
\sup \left\{\int_{E} \psi d \mu: \psi \text { simple }, \psi \geq 0, \psi \leq \varphi \text { on } E\right\} \geq \int_{E} \varphi d \mu
$$

establishing equality.
Lemma 74 hints at what the definition of the integral of a measurable function should be, since we can approximate a measurable function by a sequence of simple functions.
Definition 75 Let f be a measurable and non-negative function. Then, the integral of f is defined as

$$
\int_{E} f d \mu=\sup \left\{\int_{E} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \text { on } E\right\}
$$

Proposition 76 Let (X, \mathfrak{A}, μ) be a measure space, $E \in \mathfrak{A}$ and let $f: E \longrightarrow \mathbb{R}$ be a measurable and non-negative function. Then

$$
\int_{E} f d \mu=\int_{X} f \chi_{E} d \mu
$$

Proof. Let ψ be a simple, non-negative function such that $\psi \leq f$ on E. Then, $\psi \chi_{E}$ is simple, non-negative function and $\psi \chi_{E} \leq f \chi_{E}$ on X. Hence

$$
\begin{aligned}
\int_{E} f d \mu & =\sup \left\{\int_{E} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \text { on } E\right\} \\
& =\sup \left\{\int_{X} \psi \chi_{E} d \mu: \psi \text { simple, } 0 \leq \psi \leq f \text { on } E\right\} \\
& \leq \sup \left\{\int_{X} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \chi_{E} \text { on } X\right\} \\
& =\int_{X} f \chi_{E} d \mu
\end{aligned}
$$

Conversely, if $\psi \leq f$ on X, then $\psi(x)=0$ if $x \in E^{c}$ and hence $\psi=\psi \chi_{E}$ so that

$$
\begin{aligned}
\int_{X} f \chi_{E} d \mu & =\sup \left\{\int_{X} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \chi_{E} \text { on } X\right\} \\
& \leq \sup \left\{\int_{X} \psi d \mu+\int_{E^{c}} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \chi_{E} \text { on } X\right\} \\
& =\sup \left\{\int_{X} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \chi_{E} \text { on } X\right\} \\
& =\sup \left\{\int_{X} \psi \chi_{E} d \mu: \psi \text { simple, } 0 \leq \psi \leq f \chi_{E} \text { on } X\right\} \\
& =\sup \left\{\int_{E} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \text { on } E\right\}=\int_{E} f d \mu
\end{aligned}
$$

which gives us the other equality.
In other words, we have just proved that, for a measure space (X, \mathfrak{A}, μ), $E \in \mathfrak{A}$ and $f: X \longrightarrow \mathbb{R}$ measurable and non-negative, if f is integrable over X, then it is integrable over any E.

Lemma 77 Let (X, \mathfrak{A}, μ) be a measure space, $E \in \mathfrak{A}$ and let $f, g: E \longrightarrow \mathbb{R}$ be measurable and non-negative functions such that $f \leq g$. Then,

$$
\int_{E} f d \mu \leq \int_{E} g d \mu
$$

Proof.

$$
\begin{aligned}
\int_{E} f d \mu & =\sup \left\{\int_{E} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \text { on } E\right\} \\
& \leq \sup \left\{\int_{E} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq g \text { on } E\right\} \\
& =\int_{E} g d \mu
\end{aligned}
$$

where the inequality follows because we are expanding the set over which supremum is taken.

Lemma 78 Let (X, \mathfrak{A}, μ) be a measure space, $E, F \in \mathfrak{A}$ such that $E \subset F$ and let $f: E \longrightarrow \mathbb{R}$ be a measurable and non-negative function. Then,

$$
\int_{E} f d \mu \leq \int_{F} f d \mu
$$

Proof. Note that $f \chi_{E} \leq f \chi_{F}$ so that

$$
\int_{E} f d \mu=\int_{X} f \chi_{E} d \mu \leq \int_{X} f \chi_{F} d \mu=\int_{F} f d \mu
$$

by Lemma 77.

Lemma 79 Let (X, \mathfrak{A}, μ) be a measure space and let $f: E \longrightarrow \mathbb{R}$ be a constant, non-negative function, defined by $f(x)=c$. Then, $\forall x \in E$,

$$
\int_{E} f d \mu=c \mu(E)
$$

Proof. $\psi \leq f$ on E implies $\psi \leq \operatorname{cid}_{E}$ on E for each ψ where $i d_{E}$ is the identity function on E. This implies

$$
\int_{E} \psi d \mu \leq c \mu(E)
$$

by Lemma 69. This tells us that

$$
\int_{E} f d \mu=\sup \left\{\int_{E} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \text { on } E\right\} \leq c \mu(E)
$$

But $\psi=\operatorname{cid}_{E}$ on X is another candidate so

$$
c \mu(E) \leq \sup \left\{\int_{E} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \text { on } E\right\}=\int_{E} f d \mu
$$

3.2 Integral of Sequence of Functions

Theorem 80 (Monotone Convergence Theorem) Let $\left\{f_{n}(x): n \in \mathbb{N}\right\}$ be a sequence of measurable functions. Assume that $f_{n}(x) \rightarrow f(x)$ and that f_{n} is an increasing sequence (i.e., $\forall x, 0 \leq f_{n}(x) \leq f_{n+1}(x)$), then

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Proof. Note that $f_{n}(x) \leq f(x)$ for every n so that

$$
\int_{E} f_{n} d \mu \leq \int_{E} f d \mu
$$

Also note that

$$
\int_{E} f_{n} d \mu
$$

is an increasing sequence of numbers so that

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \leq \int_{E} f d \mu
$$

For the other inequality, let φ be a simple function with $f \geq \varphi \geq 0$. By definition,

$$
\int_{E} f d \mu=\sup \left\{\int_{E} \psi d \mu: \psi \text { is simple, } f \geq \psi \geq 0\right\}
$$

Then, the reverse inequality will follow if we can show that

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \geq \int_{E} \varphi d \mu
$$

Take a number $t \in(0,1)$. Then, $E_{n}=\left\{x \in E, f_{n}(x) \geq t \varphi(x)\right\} \subset E_{n+1}$. Let

$$
E=\bigcup_{i=1}^{\infty} E_{i}
$$

If $x \in E$, then $f_{n}(x) \rightarrow f(x)$ and, for some large n, we have $f_{n}(x) \geq t f(x)$. To prove this, assume, for the sake of contradiction, that $f_{n}(x)<t f(x)$ for every n. Then $f(x)<t f(x)$ so that $f(x)=0$ and, therefore, $f_{n}(x)<t f(x)=0$, a contradiction to the fact that $f_{n}(x) \geq 0$ for all x. As an aside, by continuity of the measure, $\forall A \in \mathfrak{A}$,

$$
\lim _{n \rightarrow \infty} \mu\left(A \cap E_{n}\right)=\mu(A \cap E)
$$

Now, since φ is a simple function, it can be represented by

$$
\varphi(x)=\sum_{j=1}^{N} a_{j} \chi_{A_{j}}(x)
$$

and, for every j,

$$
\lim _{n \rightarrow \infty} \mu\left(A_{j} \cap E_{n}\right)=\mu\left(A_{j} \cap E\right)
$$

so that

$$
\int_{E} f_{n} d \mu \geq \int_{E_{n}} f_{n} d \mu \geq \int_{E_{n}} t \varphi d \mu=\sum_{j=1}^{N} t a_{j} \mu\left(A_{j} \cap E_{n}\right)
$$

Passing to the limit,

$$
\lim _{n \rightarrow \infty} \int_{E_{n}} f_{n} d \mu
$$

is bounded, so is

$$
\sum_{j=1}^{N} t a_{j} \mu\left(A_{j} \cap E_{n}\right)
$$

Also, limit can be passed inside summation. So that

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \geq t \sum_{j=1}^{N} \lim _{n \rightarrow \infty} a_{j} \mu\left(A_{j} \cap E_{n}\right)=t \int_{E} \varphi d \mu
$$

which tells us that

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \geq t \int_{E} \varphi d \mu
$$

Now, we can let $t \rightarrow 1$.

Problem 81 Let $\left\{f_{n}: n \in \mathbb{N}\right\}$ be a sequence of measurable, non-negative functions. Show that

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x)
$$

is a measurable function and

$$
\int_{X} f d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu
$$

Solution 82 Let $k \in \mathbb{N}$. Since the finite sum of (non-negative) measurable functions is measurable, we must have

$$
\sum_{i=1}^{k} f_{i}(x)
$$

measurable. Now, since $f_{n} \geq 0$, we must have

$$
\lim _{k \rightarrow \infty} \sup _{k} \sum_{i=1}^{k} f_{i}(x)=\lim _{k \rightarrow \infty} \sum_{i=1}^{k} f_{i}(x)
$$

Thus,

$$
\lim _{k \rightarrow \infty} \sum_{i=1}^{k} f_{i}(x)
$$

is measurable. That is,

$$
\lim _{k \rightarrow \infty} \sum_{i=1}^{k} f_{i}(x)=f(x)
$$

is measurable. Again, since the finite sum of (nonnegative), measurable functions is measurable, we have that

$$
\sum_{i=1}^{k} f_{i}(x)
$$

is measurable. We can then have

$$
\int_{X} \sum_{i=1}^{k} f_{i}(x) d \mu
$$

Since each f_{i} is non-negative, we have

$$
\int_{X} \sum_{i=1}^{k} f_{i}(x) d \mu=\sum_{i=1}^{k} \int f_{i}(x) d \mu
$$

by linearity of the integral. Let

$$
g_{k}(x)=\sum_{i=1}^{k} f_{i}(x)
$$

Then, $\left\{g_{n}(x): n \in \mathbb{N}\right\}$ is a sequence of measurable functions, $g_{n}(x) \rightarrow f(x)$ and $0 \leq g_{n}(x) \leq g_{n+1}(x)$. Thus, by the Monotone Convergence Theorem,

$$
\int_{X} f d \mu=\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu=\lim _{n \rightarrow \infty} \int_{X} \sum_{i=1}^{n} f_{i}(x) d \mu=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \int_{X} f_{i}(x) d \mu=\sum_{i=1}^{\infty} \int_{X} f_{i}(x) d \mu
$$

Problem 83 Show that the converse of the Monotone Convergence Theorem fails.

Solution 84 The following is a modification of a classic example, called Marching Intervals. For $n \in \mathbb{N}$ (excludes zero!), define $f_{n}:[0,1] \longrightarrow \mathbb{R}$ as follows

$$
\begin{gathered}
f_{2 n-1}(x)=\left\{\begin{array}{cc}
1 & x \in\left[0, \frac{1}{2^{n}}\right] \\
0 & \text { otherwise }
\end{array}\right. \\
f_{2 n}(x)=\left\{\begin{array}{cc}
1 & x \in\left[\frac{1}{2^{n}}, 1\right] \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Then,

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mathfrak{m}_{1}=0
$$

since the intervals are shrinking. However, $f_{n} \nrightarrow 0$ since the sequence is oscillating.

Corollary 85 Let (X, \mathfrak{A}, μ) be a measure space and let $f, g: X \longrightarrow \mathbb{R}$ be nonnegative, measurable functions. Then,

$$
\int_{X}(f+g) d \mu=\int_{X} f d \mu+\int_{X} g d \mu
$$

It is possible to prove this corollary using the definition directly but let's use the Monotone Convergence Theorem.
Proof. Let φ_{n} and ψ_{n} be an increasing sequences of simple functions such that $\varphi_{n} \nearrow f$ and $\psi_{n} \nearrow g$. Then, $\varphi_{n}+\psi_{n} \nearrow f+g$ so that

$$
\begin{aligned}
\int_{X}(f+g) d \mu & =\int_{X} \lim _{n \rightarrow \infty}\left(\varphi_{n}+\psi_{n}\right) d \mu=\lim _{n \rightarrow \infty} \int_{X}\left(\varphi_{n}+\psi_{n}\right) d \mu \\
& =\lim _{n \rightarrow \infty} \int_{X} \varphi_{n} d \mu+\lim _{n \rightarrow \infty} \int_{X} \psi_{n} d \mu=\int_{X} f d \mu+\int_{X} g d \mu
\end{aligned}
$$

Corollary 86 Let (X, \mathfrak{A}, μ) be a measure space, $A, B \in \mathfrak{A}$ and let $f: X \longrightarrow \mathbb{R}$ be a non-negative, measurable function. If $A \cap B=\varnothing$, then

$$
\int_{A \cup B} f d \mu=\int_{A} f d \mu+\int_{B} f d \mu
$$

Proof.

$$
\int_{A \cup B} f d \mu=\int_{X} f \chi_{A \cup B} d \mu=\int_{X}\left(f \chi_{A}+f \chi_{B}\right) d \mu
$$

since $A \cap B=\varnothing$. Thus,

$$
\int_{A \cup B} f d \mu=\int_{X} f \chi_{A} d \mu+\int_{X} f \chi_{B} d \mu=\int_{A} f d \mu+\int_{B} f d \mu
$$

Lemma 87 (Fatou) If $f_{n} \geq 0$ is measurable, then

$$
\lim _{N \rightarrow \infty} \inf _{n \geq N} \int_{X} f_{n} d \mu \geq \int_{X}\left(\lim _{N \rightarrow \infty n \geq N} \inf _{n} f_{n}\right) d \mu
$$

Notice that there is no mention of the limit of f.
Proof. Let

$$
g_{N}(x)=\inf _{n \geq N} f_{n}(x)
$$

Then, $g_{N} \nearrow$ and

$$
\lim _{N \rightarrow \infty} g_{N}(x)=\lim _{N \rightarrow \infty} \inf _{n \geq N} f_{n}(x)
$$

By the Monotone Convergence theorem,

$$
\lim _{N \rightarrow \infty} \int_{X} g_{N} d \mu=\int_{X} \lim _{N \rightarrow \infty} g_{N} d \mu=\int_{X} \lim _{N \rightarrow \infty n \geq N} \inf _{n \geq N} f_{n} d \mu
$$

so that

$$
\int_{X} g_{N} d \mu \leq \int_{X} f_{n} d \mu
$$

which implies

$$
\lim _{n \rightarrow \infty} \inf _{n \geq N} \int_{X} g_{N} d \mu \leq \lim _{n \rightarrow \infty} \inf _{n \geq N} \int_{X} f_{n} d \mu
$$

and hence

$$
\lim _{N \rightarrow \infty} \int_{X} g_{N} d \mu=\int_{X} \lim _{N \rightarrow \infty} g_{N} d \mu \leq \lim _{N \rightarrow \infty} \inf _{n \geq N} \int_{X} f_{n} d \mu
$$

That is,

$$
\lim _{n \rightarrow \infty} \inf _{n \geq N} \int_{X} f_{n} d \mu \geq \int_{X}\left(\lim _{n \rightarrow \infty} \inf _{n \geq N} f_{n}\right) d \mu
$$

Exercise 88 Give an example where equality does not hold and another where the inequality does not hold.

Solution 89 Let $E=\mathbb{R}$ and consider $f_{n}=\chi_{(n, n+1)}$ for $n \in \mathbb{N}$. Then, $f_{n} \longrightarrow \mathbf{0}$ pointwise, where $\mathbf{0}$ is the zero function. However,

$$
\int_{E} \lim _{N \rightarrow \infty} \inf _{n \geq N} f_{n} d \mu=\int_{E}(0) d \mu=0<1=\lim _{N \rightarrow \infty} \inf _{n \geq N} \int_{E} f_{n} d \mu
$$

If we have a sequence of increasing functions $\left\{f_{n}: n \in \mathbb{N}\right\}$ such that $f_{n} \rightarrow f$, then

$$
\lim _{N \rightarrow \infty} \inf _{n \geq N} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

Theorem 90 (Chebyshev Inequality) Let $f \geq 0$ be a measurable function and $\lambda>0$ be a constant. Then,

$$
\mu\left(X_{\lambda}\right) \leq \frac{1}{\lambda} \int_{X} f d \mu
$$

where $X_{\lambda}=\{x \in X: f(x) \geq \lambda\}=f^{-1}[\lambda, \infty]$ is a measurable set.
Proof. Since $X_{\lambda} \subset X$, we must have

$$
\int_{X} f d \mu \geq \int_{X_{\lambda}} f d \mu \geq \int_{X_{\lambda}} \lambda d \mu=\lambda \mu\left(X_{\lambda}\right)
$$

Problem 91 Let f be a nonnegative measurable function on X such that

$$
\int_{X} f d \mu=0
$$

Show that $f=0$ almost everywhere on X.
Solution 92 Let $\epsilon>\frac{1}{n}$ and $Y_{n}=\left\{x: f(x) \geq \frac{1}{n}\right\}$. Since f is measurable, we must have $Y_{n} \in \mathfrak{A}$ and that $\mu\left(Y_{n}\right) \geq 0$. Then, by Chebyshev's inequality,

$$
\mu\left(Y_{n}\right) \leq \frac{1}{\epsilon} \int_{X} f d \mu=0
$$

Thus, $\mu\left(Y_{n}\right)=0$ for every $\epsilon>\frac{1}{n}$. Now let

$$
Y=\bigcup_{n=1}^{\infty} Y_{n}
$$

Then, $Y=\{x: f(x)>0\}$ and, by countable subadditivity of μ,

$$
\mu(Y) \leq \sum_{n=1}^{\infty} \mu\left(Y_{n}\right)=0
$$

Thus, $\mu(Y)=0$. The result follows from Borel-Cantelli's Lemma.

Problem 93 Show that Fatou's Lemma implies Monotone Convergence Theorem.

Solution $94 \operatorname{Let}\left\{f_{n}(x): n \in \mathbb{N}\right\}$ be a sequence of non-negative measurable functions with $f_{n}(x) \rightarrow f(x)$ and $0 \leq f_{n}(x) \leq f_{n+1}(x)$. We need to show that

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

We can view

$$
\int_{E} f_{n} d \mu
$$

as a sequence of positive, real numbers. In general, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{k \geq n} \int_{E} f_{k} d \mu \geq \lim _{n \rightarrow \infty} \inf _{k \geq n} \int_{E} f_{k} d \mu \tag{3}
\end{equation*}
$$

Since $f_{n} \leq f_{n+1}$ and $f_{n} \rightarrow f$, it must be that $f_{n} \leq f$ for all n. Thus,

$$
\int_{E} f_{n} d \mu \leq \int_{E} f d \mu
$$

for all n. Since this is valid for each n, we must have

$$
\sup _{k \geq n} \int_{E} f_{k} d \mu \leq \int_{E} f d \mu
$$

Letting $n \rightarrow \infty$ on both sides gives us

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{k \geq n} \int_{E} f_{k} d \mu \leq \int_{E} f d \mu \tag{4}
\end{equation*}
$$

Since $f_{n}(x) \rightarrow f(x)$, we must have

$$
\lim _{n \rightarrow \infty} \inf _{k \geq n} f_{k}=\lim _{n \rightarrow \infty} f_{n}=f
$$

so that

$$
\lim _{n \rightarrow \infty} \sup _{k \geq n} \int_{E} f_{k} d \mu \leq \int_{E} \lim _{n \rightarrow \infty} \inf _{k \geq n} f_{k} d \mu
$$

by $\boldsymbol{E q}$ (4). This and $\boldsymbol{E q}$ (3) together imply that

$$
\lim _{n \rightarrow \infty} \inf _{k \geq n} \int_{E} f_{k} d \mu=\lim _{n \rightarrow \infty} \sup _{k \geq n} \int_{E} f_{k} d \mu
$$

and, therefore

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\lim _{n \rightarrow \infty} \inf _{k \geq n} \int_{E} f_{k} d \mu=\lim _{n \rightarrow \infty} \sup _{k \geq n} \int_{E} f_{k} d \mu
$$

Then, by Fatou's lemma, we have the chain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf _{k \geq n} \int_{E} f_{k} d \mu \leq \lim _{n \rightarrow \infty} \sup _{k \geq n} \int_{E} f_{k} d \mu \leq \int_{E} \lim _{n \rightarrow \infty} \inf _{k \geq n} f_{k} d \mu \leq \lim _{n \rightarrow \infty} \inf _{k \geq n} \int_{E} f_{k} d \mu \tag{5}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{k \geq n} \int_{E} f_{k} d \mu=\lim _{n \rightarrow \infty} \inf _{k \geq n} \int_{E} f_{k} d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \tag{6}
\end{equation*}
$$

(3) and (6) together imply

$$
\limsup _{n \rightarrow \infty} \sup _{k \geq n} f_{k} d \mu \leq \int_{E} f d \mu=\lim _{n \rightarrow \infty} \inf _{k \geq n} \int_{E} f_{k} d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu
$$

Thus, (5) can be re-written as

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \leq \int_{E} f d \mu \leq \lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu
$$

so that

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

3.3 Integral as a Measure

Can we define the integral differently? No. There is, in a certain sense, uniqueness.

Theorem 95 Let $\mu^{+}(X)$ be the set of all measurable non-negative functions $f: X \longrightarrow \mathbb{R}$. Assume $J: \mu^{+}(X) \times \mathfrak{A} \longrightarrow \mathbb{R}^{+} \cup\{\infty\}$ such that

1. $J(f, A) \geq 0$ for all f and A
2. $A, B \in \mathfrak{A}$ with $A \cap B=\varnothing \Longrightarrow J(f, A \cup B)=J(f, A)+J(f, B)$
3. $f(x)=c$ for some constant c on $A \Longrightarrow J(f, A)=c J(i d, A)$
4. $f_{n} \nearrow f \Longrightarrow \lim _{n \rightarrow \infty} J\left(f_{n}, A\right)=J(f, A)$

Then, J is unique and

$$
J(f, A)=\int_{A} f d \nu
$$

Before we enter a proof of Theorem 95, we demonstrate the following. These can indeed be proven using the fact that $J(f, A)$ has an integral representation but let us show that this follows from the 4 properties above.

Corollary $96 J\left(\chi_{A}, X\right)=J(i d, A)$

Proof. $J\left(\chi_{A}, X\right)=J\left(\chi_{A}, A \cup A^{c}\right)=J\left(\chi_{A}, A\right)+J\left(\chi_{A}, A^{c}\right)$ by (2)

$$
=1 J(i d, A)+0 J\left(i d, A^{c}\right) \text { by }(3)
$$

$$
=J(i d, A)
$$

Corollary $97 J(f, \varnothing)=0$.
Proof. $J(f, \varnothing)=J(f, \varnothing \cup \varnothing)=J(f, \varnothing)+J(f, \varnothing)$ by (2) so that $J(f, \varnothing)=0$

Corollary 98 Let f and g be measurable functions. Then, $J(\alpha f+\beta g, A)=$ $\alpha J(f, A)+\beta J(g, A)$

Proof. Let us start with simple functions:

$$
\phi=\sum_{i=1}^{n} c_{i} \chi_{A_{i}} \text { and } \varphi=\sum_{i=1}^{n} d_{i} \chi_{A_{i}}
$$

where A_{i} is a partition of X. Then, by using induction on (2), we get

$$
J(\phi+\varphi, A)=J\left(\phi+\varphi, A \cap\left(\bigcup_{i=1}^{n} A_{i}\right)\right)=\sum_{i=1}^{n} J\left(\phi+\varphi, A \cap A_{i}\right)
$$

By (3), we get

$$
\begin{aligned}
J(\phi+\varphi, A) & =\sum_{i=1}^{n}\left(c_{i}+d_{i}\right) J\left(i d, A \cap A_{k}\right) \\
& =\sum_{i=1}^{n} c_{i} J\left(i d, A \cap A_{k}\right)+\sum_{i=1}^{n} d_{i} J\left(i d, A \cap A_{k}\right) \\
& =J(\phi, A)+J(\varphi, A)
\end{aligned}
$$

Now since f, g are measurable, \exists simple f_{n}, g_{n} such that $f_{n} \nearrow f$ and $g_{n} \nearrow g$. Then, (4) gives us the required result. Similarly, we can show that $J(\alpha f, A)=$ $\alpha J(f, A)$.

And now, for a proof of Theorem 95.
Proof. Let $\nu(A)=J(i d, A)$. We show that ν is a measure. $\nu(\varnothing)=0$ follows immediately from Corollary 97. To show countable additivity, we show continuity from below. Let $A_{n} \subset A_{n+1}$ be an increasing sequence of measurable sets and let

$$
\bigcup_{i=1}^{\infty} A_{i}=A
$$

Then, $\chi_{A_{n}} \leq \chi_{A_{n+1}}$ and $\chi_{A_{n}} \rightarrow \chi_{A}$ pointwise on X. By (4), $\lim _{n \rightarrow \infty} J\left(\chi_{A_{n}}, X\right)=$ $J\left(\chi_{A}, X\right)$. By Corollary 96, $\nu(A)=J(i d, A)=J\left(\chi_{A}, X\right)=\lim _{n \rightarrow \infty} J\left(\chi_{A_{n}}, X\right)=$ $\lim _{n \rightarrow \infty} J\left(i d, A_{n}\right)=\lim _{n \rightarrow \infty} \nu\left(A_{n}\right)$.

Now, let

$$
f=\sum_{i=1}^{n} c_{i} \chi_{A_{i}}
$$

be a simple function. Then,

$$
\begin{aligned}
J(f, A) & =J\left(f, \bigcup_{i=1}^{n} A \cap A_{k}\right)=\sum_{i=1}^{n} J\left(f, A \cap A_{k}\right) \text { by }(2) \\
& =\sum_{i=1}^{n} c_{i} J\left(i d, A \cap A_{k}\right) \text { by }(3) \\
& =\sum_{i=1}^{n} c_{i} \nu\left(A \cap A_{k}\right)=\int_{A} f d \nu
\end{aligned}
$$

Now, for an arbitrary measurable function, we can always come up with an increasing sequence of simple functions which converge to our arbitrary function.

What follows in this section will be a general treatment of obtaining a measure from another.

Theorem 99 Let $(X, \mathfrak{A}, \sigma)$ be a measurable space. Fix a measurable function $f \geq 0$. Define

$$
\varphi_{f}(A)=\int_{A} f d \mu
$$

Then, φ_{f} is a measure on \mathfrak{A}.
Proof. It is clear that $\varphi_{f}(\varnothing)=0$. It is also easy to show that φ_{f} is finitely additive and monotone, by definition. To prove that φ_{f} is countably additive, we can show φ_{f} is continuous from below: that is, for any increasing sequence $A_{1} \subset A_{2} \subset \ldots$ of measurable sets,

$$
\lim _{n \rightarrow \infty} \varphi_{f}\left(A_{n}\right)=\varphi_{f}(A)
$$

where

$$
A=\bigcup_{i=1}^{\infty} A_{i}
$$

Define $g_{n}(x)=f(x) \chi_{A_{n}}(x)$. Then, g_{n} is an increasing sequence and converges to $f \cdot \chi_{A}$, that is $g_{n} \nearrow f \cdot \chi_{A}$. By Monotone Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \varphi_{f}\left(A_{n}\right)=\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu=\int_{X} f \chi_{A} d \mu=\int_{A} f d \mu=\varphi_{f}(A)
$$

Lemma 100 (Absolute continuity) $\mu(A)=0 \Longrightarrow \varphi_{f}(A)=0$

Proof. If f is simple, we get that

$$
\varphi_{f}(A)=\sum_{k=1}^{N} a_{k} \mu\left(A \cap A_{k}\right) \leq \mu(A)=0
$$

If f is not simple, then take $f_{n} \nearrow f$ with f_{n} simple. By the Monotone Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int_{A} f_{n} d \mu=\int_{A} f d \mu
$$

Since all the integrals on the left side are 0 , we must have

$$
\int_{A} f d \mu=0
$$

Lemma 101 Assume that

$$
\int_{X} f d \mu<\infty
$$

Then, f is finite almost everywhere. Moreover,

$$
\lim _{\mu(E) \rightarrow 0} \int_{E} f d \mu=0
$$

Proof. We can let

$$
\int_{X} f d \mu \leq c
$$

for some constant c. Now, note that

$$
A=\{x: f(x)=\infty\}=\bigcap_{n=1}^{\infty} A_{n}=\bigcap_{n=1}^{\infty}\{f(x) \geq n\}
$$

so that $\mu(A) \leq \mu\left(A_{n}\right)$ and by Chebyshev's Inequality,

$$
\mu\left(A_{n}\right) \leq \frac{1}{n} \int_{X} f d \mu \leq \frac{c}{n}
$$

Since $c<\infty$, we can pass to the limit to get $\mu(A)=0$.
For the second part, we need to prove that $\forall \epsilon>0$, there is a $\delta>0$ such that

$$
\mu(E)<\delta \Longrightarrow \int_{E} f d \mu<\epsilon
$$

In other words, $\mu(E)<\delta \Longrightarrow \varphi_{f}(E)<\epsilon$.
If f is simple, then

$$
\int_{X} f d \mu=\sum_{k=1}^{N} a_{k} \mu\left(A_{k}\right)
$$

where we can assume that $a_{k}<\infty$, since otherwise we have equality trivially. Then,

$$
\int_{E} f d \mu=\sum_{k=1}^{N} a_{k} \mu\left(E \cap A_{k}\right) \leq \mu(E) \sum_{k=1}^{N} a_{k}
$$

Thus, given $\epsilon>0$, we can set

$$
\delta=\epsilon / \sum_{k=1}^{N} a_{k}
$$

If f is not simple, then \exists a sequence of simple functions $\left\{g_{n}: n \in \mathbb{N}\right\}$ such that $g_{n} \rightarrow f$. Take a simple function $g_{\epsilon}<f$ from the sequence of simple functions such that

$$
\int_{X} g_{\epsilon} d \mu \leq \int_{X} f d \mu<\int_{X} g_{\epsilon} d \mu+\frac{\epsilon}{2}
$$

where g_{ϵ}, because it is integrable, has finitely many values and they are all finite so that g_{ϵ} is bounded (this is different from $1 / x$, say, which does not have finitely many values). Thus, $g_{\epsilon}(x) \leq c_{\epsilon}$ for any $x \in X$ and so,

$$
\int_{X} f d \mu=\int_{X}\left(f-g_{\epsilon}\right) d \mu+\int_{X} g_{\epsilon} d \mu \leq \int_{X}\left(f-g_{\epsilon}\right) d \mu+c_{\epsilon} \mu(X)
$$

Also,

$$
\int_{X}\left(f-g_{\epsilon}\right) d \mu<\frac{\epsilon}{2}
$$

and now take $\delta=\frac{\epsilon}{2 c_{\epsilon}}$. Then,

$$
\begin{aligned}
\mu(E) & <\frac{\epsilon}{2 c_{\epsilon}} \Longrightarrow \varphi_{f}(E)=\int_{E} f d \mu \\
& =\int_{X} f \chi_{E} d \mu<\int_{X} g_{\epsilon} \chi_{E} d \mu+\frac{\epsilon}{2} \\
& \leq c_{\epsilon} \mu(E)+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

3.4 Integral of Continuous Functions

Let (X, \mathfrak{A}, μ) be a measure space and let $f(x)$ be a μ-measurable function and let $g(x)=f(x)$ if $f(x) \geq 0$ and $=0$ otherwise. Then, $g(x)$ is integrable. For the negative part, let $h(x)=-f(x)$. Then, $h(x)$ is also integrable and we define

$$
\int_{X} f d \mu=-\int_{X} h d \mu
$$

for $f(x) \leq 0$. In general, provided that f is finite, we can decompose $f(x)$ as $g(x)+h(x)$. There is a cleaner, more standard way of doing this: we
let $f^{+}=\max (f, 0)$ and $f^{-}=\max (-f, 0) . f^{+}$and f^{-}are μ-measurable by Corollary 49. Moreover, both functions are non-negative and $f=f^{+}-f^{-}$. Denote $|f|=f^{+}+f^{-}$. If

$$
\int_{E} f^{+} d \mu, \int_{E} f^{-} d \mu<\infty
$$

then we say that f is μ-summable (i.e. finite). The standard terminology is "integrable", i.e. the integral is well-defined but we will prefer summable. Thus, we can define

$$
\int_{E} f d \mu=\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu
$$

for any $E \in \mathfrak{A}$.
Example 102 Let $X=N=\{1,2, \ldots\}, \mu(A)=|A|$ (counting measure), $A \subset$ X. Let $g: \mathbb{N} \longrightarrow \mathbb{R}$ be a sequence $g(n)=g_{n}<\infty$. Then,

$$
\int_{E} g d \mu=\sum_{n \in E} g_{n}
$$

To show this, note that we can write g as

$$
g=\sum_{n=1}^{\infty} c_{n} \chi_{\{n\}}
$$

where $c_{n}=g(n)$ and $g_{k}=c_{k} \chi_{\{k\}}$. Note that

$$
\int_{\mathbb{N}} g_{k} d \mu=c_{k}
$$

Furthermore, g_{k} is a sequence of measurable functions such that

$$
g=\sum_{n=1}^{\infty} g_{n}
$$

Thus, by Problem 81,

$$
\int_{\mathbb{N}} g d \mu=\sum_{n=1}^{\infty} \int_{\mathbb{N}} g_{k} d \mu=\sum_{n=1}^{\infty} g(n)
$$

Things are, however, not always this clean. The above representation rests on the assumption that $g(n)<\infty$ for each n. If we do not have this guarantee, we can run across $\infty-\infty$. Moreover, we have convergence issues to deal with, as well. Therefore, it is not always true that

$$
\int_{X} f d \mu \neq \sum_{n=1}^{\infty} f_{n}
$$

What if $f_{n}=\frac{(-1)^{n}}{n}$? The sequence converges and so does the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

On the other hand,

$$
\sum_{n=1}^{\infty} f_{n}^{+}
$$

diverges. Same for f_{n}^{-}, so

$$
\int_{X} f d \mu
$$

is not well-defined!
Problem 103 Let $x \in X$ and let $\left(X, 2^{X}, \delta_{x}\right)$ be a measure space where δ_{x} is defined as

$$
\delta_{x}(E)= \begin{cases}1 & x \in E \\ 0 & x \notin E\end{cases}
$$

If f is a nonnegative function such that

$$
\int f d \delta_{x}<\infty
$$

What can we say about f ?
Solution $104 f$ is measurable since for any measurable subset of the codomain of f, the pre-image is a subset of X and hence in the σ-algebra - measurable. We also know that f is summable because the integral is finite. By Lemma 101, f is finite almost everywhere. That is, the set

$$
\bigcap_{n=0}^{\infty}\{y \in X:|f(y)|>n\}
$$

has δ_{x}-measure zero. Hence

$$
x \notin \bigcap_{n=0}^{\infty}\{y \in X:|f(y)|>n\}
$$

That is, $\forall n, x \notin\{y \in X:|f(y)| \geq n\}$. In particular, $|f(x)| \leq 0$. Since x is arbitrary, we can conclude that f is the zero function.

Lemma 105 Let f be a μ-measurable function, defined on a measure space (X, \mathfrak{A}, μ). Then, f is μ-summable if and only if $|f|$ is μ-summable. Moreover,

$$
\left|\int_{X} f d \mu\right| \leq \int_{X}|f| d \mu
$$

This follows easily from the basic definition. This feature is super important and is what makes Lebesgue integral different from Riemann integral, which is discussed in the next section.
Proof. f is μ-summable \Longleftrightarrow

$$
\text { both } \int_{E} f^{+} d \mu<\infty \text { and } \int_{E} f^{-} d \mu<\infty
$$

Then,

$$
\int_{E} f^{+} d \mu+\int_{E} f^{-} d \mu=\int_{E}|f| d \mu<\infty
$$

and conversely. Furthermore,

$$
\begin{aligned}
\left|\int_{E} f d \mu\right| & =\left|\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu\right| \leq\left|\int_{E} f^{+} d \mu\right|+\left|\int_{E} f^{-} d \mu\right| \\
& =\int_{E} f^{+} d \mu+\int_{E} f^{-} d \mu=\int_{E}|f| d \mu
\end{aligned}
$$

Problem 106 Show that the converse doesn't hold
Solution 107 Let (X, \mathfrak{A}, μ) be a measure space with $\mu(X)<\infty$ and let $A \subset X$ such that $A \notin \mathfrak{A}$. Define $f=-1+2 \chi_{A}$. Then, $|f(x)|=1$ for all x so that the $|f|$ is summable. However, f is not measurable since A is not measurable.

Problem 108 Let f_{n} be a sequence of summable functions and $f_{n} \longrightarrow f$ for a summable f. Show that

$$
\int_{X}\left|f_{n}-f\right| d \mu \rightarrow 0 \Longleftrightarrow \int_{X}\left|f_{n}\right| d \mu \rightarrow \int_{X}|f| d \mu
$$

Solution 109 Let $f_{n}=f_{n}^{+}-f_{n}^{-}$and $f=f^{+}-f^{-}$, and $f_{n}-f=g_{n}=g_{n}^{+}-g_{n}^{-}$. Rearranging gives us $g_{n}^{+}+f_{n}^{-}+f^{+}=f_{n}^{+}+f^{-}+g_{n}^{-}$so that

$$
\begin{equation*}
\int_{X} g_{n}^{+} d \mu+\int_{X} f_{n}^{-} d \mu+\int_{X} f^{+} d \mu=\int_{X} f_{n}^{+} d \mu+\int_{X} f^{-} d \mu+\int_{X} g_{n}^{-} d \mu \tag{7}
\end{equation*}
$$

Now, the first condition is equivalent to

$$
\begin{aligned}
\int_{X}\left|f_{n}-f\right| d \mu & \rightarrow 0 \Longleftrightarrow \int_{X}\left|g_{n}\right| d \mu \rightarrow 0 \Longleftrightarrow \int_{X} g_{n}^{+} d \mu+\int_{X} g_{n}^{-} d \mu \rightarrow 0 \\
& \Longleftrightarrow \int_{X} g_{n}^{+} d \mu \rightarrow 0 \text { and } \int_{X} g_{n}^{-} d \mu \rightarrow 0
\end{aligned}
$$

so that applying limit to $\boldsymbol{E q}$ (7) gives us

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{X} f_{n}^{-} d \mu+\int_{X} f^{+} d \mu & =\lim _{n \rightarrow \infty} \int_{X} f_{n}^{+} d \mu+\int_{X} f^{-} d \mu \\
& \Longleftrightarrow \lim _{n \rightarrow \infty}\left(\int_{X} f_{n}^{+} d \mu-\int_{X} f_{n}^{-} d \mu\right) \\
& =\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f^{+} d \mu-\int_{X} f^{-} d \mu=\int_{X} f d \mu \\
& \Longleftrightarrow \int_{X} f_{n} d \mu \rightarrow \int_{X} f d \mu \Longleftrightarrow \int_{X}\left|f_{n}\right| d \mu \rightarrow \int_{X}|f| d \mu
\end{aligned}
$$

Now for some notation: if f is μ-summable, then write $f \in \mathcal{L}^{1}(\mu)$. The 1 in the superscript is immaterial for now but its importance will become relevant when we cover L^{p} spaces.

Theorem 110 Let $f, g \in \mathcal{L}^{1}(\mu)$ and $t \in \mathbb{R}$. Then, $t f \in \mathcal{L}^{1}(\mu), f+g \in \mathcal{L}^{1}(\mu)$ and

$$
\int_{E} t f d \mu=t \int_{E} f d \mu \text { and } \int_{E}(f+g) d \mu=\int_{E} f d \mu+\int_{E} g d \mu
$$

Proof. Assume that $t=0$. Then, $\int_{E} t f d \mu=0$ so that $t f \in \mathcal{L}^{1}(\mu)$. If $t \neq 0$, we know that $t f$ is measurable by Corollary 49. We show that $|t f|$ is summable.
$\int_{E}|t f| d \mu=\int_{E}|t||f| d \mu=\int_{E}\left(|t| f^{+}+|t| f^{-}\right) d \mu=\int_{E}|t| f^{+} d \mu+\int_{E}|t| f^{-} d \mu<\infty$
since the latter two are finite, because f^{+}and f^{-}are both summable.
Next, let $h=f+g$ so that $h^{+}-h^{-}=f^{+}-f^{-}+g^{+}-g^{-}$. Then, $h^{+}+f^{-}+g^{-}=$ $f^{+}+g^{+}+h^{-}$so we can use linearity since we are working with non-negative functions. This gives us

$$
\int_{E} h^{+} d \mu+\int_{E} f^{-} d \mu+\int_{E} g^{-} d \mu=\int_{E} f^{+} d \mu+\int_{E} g^{+} d \mu+\int_{E} h^{-} d \mu
$$

Rearranging this gives us

$$
\begin{aligned}
\int_{E} h^{+} d \mu-\int_{E} h^{-} d \mu & =\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu+\int_{E} g^{+} d \mu-\int_{E} g^{-} d \mu \\
& =\int_{E} f d \mu+\int_{E} g d \mu
\end{aligned}
$$

We know that h is measurable but is it summable? As shown in Problem 106, it does not follow that $h \notin \mathcal{L}$. Note that since the two terms on the RHS are
finite, it follows that the term on the LHS is finite.

$$
\begin{aligned}
\left|\int_{E} h^{+} d \mu-\int_{E} h^{-} d \mu\right| & \leq\left|\int_{E} h^{+} d \mu\right|+\left|\int_{E} h^{-} d \mu\right| \\
& \leq \int_{E}\left|h^{+}\right| d \mu+\int_{E}\left|h^{-}\right| d \mu=\int_{E} h^{+} d \mu+\int_{E} h^{-} d \mu \\
& \Longrightarrow\left|\int_{E} h^{+} d \mu-\int_{E} h^{-} d \mu\right| \leq \int_{E} h^{+} d \mu+\int_{E} h^{-} d \mu \\
& \Longrightarrow\left|\int_{E} h d \mu\right| \leq \int_{E} f d \mu+\int_{E} g d \mu
\end{aligned}
$$

because $h^{+}=f^{+}+g^{+}$and $h^{-}=f^{-}+g^{-}$. Therefore, $h=f+g \in \mathcal{L}^{1}(\mu)$ and the Lebesgue Integral is linear.

We are assuming that

$$
\int_{E} f^{ \pm} d \mu<\infty \text { and } \int_{E} g^{ \pm} d \mu<\infty
$$

so, by Lemma 101, the four functions $f^{ \pm}$and $g^{ \pm}$are finite almost everywhere. Therefore, $f+g$ is well defined and finite on $X \backslash N$ where $\mu(N)=0$ and we can extend $f+g$ to be (honestly) finite by defining $(f+g)(n)=0$ for $n \in N$. The product of two summable functions is not summable, however. For a simple example, take $I=(0,1]$ and $f(x)=g(x)=1 / \sqrt{x}$ and $\mu=\mathfrak{m}_{1}$.

Theorem 111 Let $f, g \in \mathcal{L}^{1}(\mu)$ with $f \leq g$. Then, for any $E \in \mathfrak{A}$,

$$
\int_{E} f d \mu \leq \int_{E} g d \mu
$$

Proof. Again, $f^{+}-f^{-} \leq g^{+}-g^{-}$so that $f^{+}+g^{-} \leq f^{-}+g^{+}$. We can then use linearity of the integral.

Theorem 112 (Lebesgue Dominated Convergence Theorem) Let $f_{n} \in$ $\mathcal{L}^{1}(\mu), f_{n}(x) \rightarrow f(x)$ for every x and $\left|f_{n}(x)\right| \leq F(x)$ for every x and n for some $F \in \mathcal{L}^{1}(\mu)$. Then,

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Proof. Case 1. $f(x)=0$ for all $x \in X$ and $f_{n} \geq 0$.
Then,

$$
\int_{E} f_{n} d \mu \geq 0
$$

so that

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\lim _{n \rightarrow \infty} \inf _{n \geq N} \int_{E} f_{n} d \mu \geq 0
$$

Let us consider $F(x)-f_{n}(x) \geq 0$. By Fatou's lemma,

$$
\lim _{n \rightarrow \infty} \inf _{n \geq N} \int_{E}\left(F-f_{n}\right) d \mu \geq \int_{E} \lim _{n \rightarrow \infty} \inf _{n \geq N}\left(F-f_{n}\right) d \mu
$$

The lower limit is not linear! It is monotone in one direction but not linear. Recall that

$$
\lim _{n \rightarrow \infty} \inf _{n \geq N}\left(A+a_{n}\right)=A+\lim _{n \rightarrow \infty} \inf _{n \geq N} a_{n} \text { and } \lim _{n \rightarrow \infty n} \inf _{n \geq N}\left(-a_{n}\right)=-\lim _{n \rightarrow \infty} \sup _{n \geq N} a_{n}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \inf _{n \geq N} \int_{E}\left(F-f_{n}\right) d \mu \geq \int_{E}\left(F-\lim _{n \rightarrow \infty} \sup _{n \geq N} f_{n}\right) d \mu
$$

Since $f_{n} \rightarrow 0$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \inf _{n \geq N} \int_{E}\left(F-f_{n}\right) d \mu & \left.=\lim _{n \rightarrow \infty n \geq N} \inf _{n} F d \mu-\int_{E} f_{n} d \mu\right) \geq \int_{E} F d \mu \\
& \Longrightarrow \int_{E} F d \mu-\lim _{n \rightarrow \infty_{n \geq N} \sup _{E} \int_{E} f_{n} d \mu \geq \int_{E} F d \mu} \\
& \Longrightarrow \lim _{n \rightarrow \infty} \sup _{n \geq N} \int_{E} f_{n} d \mu \leq 0 \\
& \Longrightarrow \lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=0=\int_{E} f d \mu
\end{aligned}
$$

The rest of the cases are left as an exercise.
Lemma 113 Let (X, \mathfrak{A}, μ) be a measurable space with $\mu(X)<\infty$. Let f be a summable function. Then, f is finite almost everywhere.

Proof. Consider $f_{n}=n \chi_{E_{n}}$ and let $E_{n}=\{x \in X: f(x) \geq n\}$. Then, we have a decreasing sequence of sets $E_{n} \subset E_{n-1}$. Now for all x in E_{n} we have that $n \chi_{E_{n}}(x)=n \leq|f(x)|$. From the monotonicity of the integral,

$$
n \mu\left(E_{n}\right)=\int_{X} n \chi_{E_{n}} d \mu \leq \int_{E_{n}}|f| d \mu \leq \int_{X}|f| d \mu=C<\infty
$$

for some $C \in \mathbb{R}$. That is, $\mu\left(E_{n}\right) \leq C / n$. Now set

$$
E=\bigcap_{n=1}^{\infty} E_{n}
$$

i.e., x belongs to E iff $|f(x)|=\infty$. Since $\mu\left(E_{1}\right)<\infty$ (because $\left.\mu(X)<\infty\right)$, then by continuity of measure,

$$
0 \leq \mu(E) \leq \mu\left(E_{n}\right) \leq C / n \Longrightarrow \mu(E)=0
$$

Corollary 114 Let (X, \mathfrak{A}, μ) be a measurable space with $\mu(X)<\infty$ and let f_{n}, f be functions which are finite almost everywhere for each n. Assume that $\left|f_{n}\right| \leq C$ for each n and $f_{n} \longrightarrow f$. Then

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

Proof. We can let $C(x)=C$ be a constant function. Then $C \in \mathcal{L}^{1}(\mu)$. Moreover, note that, for each n,

$$
\left|\int_{X} f_{n} d \mu\right| \leq \int_{X}\left|f_{n}\right| d \mu \leq C \mu(X)<\infty
$$

hence $f_{n} \in \mathcal{L}^{1}(\mu)$. Hence by Lebesgue's Dominated Convergence Theorem, the result follows.

Problem 115 Assume $\left\{f_{n}: n \in \mathbb{N}\right\}$ is a decreasing sequence of positive measurable functions with $f_{n}(x) \rightarrow f(x)$ for every $x \in X$. If f_{1} is summable, show that

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

but this might not be true if f_{1} is not summable.
Solution 116 Since we have $f_{1} \geq f_{n}$ for all n, and in particular, $f_{1} \geq f$. Moreover, $\int_{X} f_{n} d \mu \leq \int_{X} f_{1} d \mu$. By Fatou's Lemma,

$$
\infty>\int_{X} f_{1} d \mu \geq \lim _{N \rightarrow \infty} \inf _{n \geq N} \int_{X} f_{n} d \mu \geq \int_{X}\left(\lim _{N \rightarrow \infty} \inf _{n \geq N} f_{n}\right) d \mu=\int_{X} f d \mu
$$

Hence f is summable and positive almost everywhere. The result then follows by Lebesgue's Dominated Convergence.

Consider $\left\{f_{n}=n \chi_{(0,1 / n-1)}: n \in \mathbb{N}\right\}$. Then, f_{1} is not summable, $f_{n+1} \leq f_{n}$ and $f_{n} \rightarrow \mathbf{0}$ pointwise but

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d \mu=\lim _{n \rightarrow \infty}\left(\frac{n}{n-1}\right)=1 \neq \int_{\mathbb{R}} f d \mu=0
$$

Problem 117 Suppose μ is a positive measure on X, f is a non-negative measurable function and

$$
\int_{X} f d \mu=c<\infty
$$

Show that

$$
\lim _{n \rightarrow \infty} \int_{X} n \log \left(1+(f / n)^{\alpha}\right) d \mu=\left\{\begin{array}{cc}
\infty & \text { for } \alpha \in(0,1) \\
c & \text { if } \alpha=1 \\
0 & \text { if } \alpha>1
\end{array}\right.
$$

Solution 118 Let $f_{n}(x)=n \log \left(1+(f(x) / n)^{\alpha}\right)$. Then, $f_{n} \geq 0$. Consider the case that $0<\alpha<1$. Then, $(f(x) / n)^{\alpha} \rightarrow 0$. By L'Hospital's Rule,

$$
\lim _{n \rightarrow \infty} \frac{\log \left(1+(f(x) / n)^{\alpha}\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{-\alpha f(x)^{\alpha} / n^{\alpha+1}}{1+(f(x) / n)^{\alpha}}}{-\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{\alpha f(x)^{\alpha}}{n^{-2}+f(x)^{\alpha} n^{-2-\alpha}}=\infty
$$

Hence by Fatou's lemma, $\underline{\lim } \int_{X} f_{n} d \mu \geq \int_{X}\left(\underline{\lim } f_{n}\right) d \mu=\infty$ so that $\underline{\lim } \int_{X} f_{n} d \mu=$ $\lim \int_{X} f_{n} d \mu=\infty$. Next, suppose that $\alpha=1$ and recall that $x \geq 0 \Longrightarrow$ $\log (1+x) \leq x$. Thus,

$$
f_{n}=\log \left(1+\frac{f}{n}\right) \leq \frac{f}{n}
$$

and so $f_{n} \leq f$. Thus, each f_{n} is summable and by the Lebesgue Dominated Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu=c
$$

Finally, consider $\alpha>1$. Then,

$$
\lim _{n \rightarrow \infty} \frac{\log \left(1+(f(x) / n)^{\alpha}\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{-\alpha f(x)^{\alpha} / n^{\alpha+1}}{1+(f(x) / n)^{\alpha}}}{-\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{\alpha f(x)^{\alpha}}{n^{\alpha-1}+f(x)^{\alpha} / n}=0
$$

By Fatou's Lemma, the result follows.

3.5 Convergence in Measure

Definition 119 Let $\mathcal{L}^{0}(\mu)$ be the set of μ-measurable functions which are finite almost everywhere. If $\left\{f_{n}: n \in \mathbb{N}\right\} \cup\{f\} \subset \mathcal{L}^{0}(\mu)$, we say that f_{n} converges to f in measure, written as $f_{n} \Longrightarrow f$, if $\forall \epsilon>0, \mu\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Problem 120 If $\left\{f_{n}: n \in \mathbb{N}\right\} \cup\{f, g\} \subset \mathcal{L}^{0}(\mu)$, and $f_{n} \Longrightarrow f$ and $f_{n} \Longrightarrow g$, then $f=g$ almost everywhere

Solution 121 Let $\epsilon>0, E_{f-g}:=\{x:|f(x)-g(x)| \geq \epsilon\}, E_{f}=\left\{x:\left|f(x)-f_{n}(x)\right| \geq \frac{\epsilon}{2}\right\}$ and $E_{g}=\left\{x:\left|g(x)-f_{n}(x)\right| \geq \frac{\epsilon}{2}\right\}$. Then, note that $E_{f-g} \subset E_{f} \cup E_{g}$. To show this, let $x \notin E_{g} \cap E_{f}$. Then, $\left|f_{n}(x)-f(x)\right|<\epsilon / 2$ and $\left|f_{n}(x)-g(x)\right|<\epsilon / 2$ so that $|f(x)-g(x)|=\left|f(x)-f_{n}(x)+f_{n}(x)-g(x)\right| \leq\left|f(x)-f_{n}(x)\right|+$ $\left|f_{n}(x)-g(x)\right|<\epsilon$ so that $x \notin E_{f-g}$. Then, by monotonicity of μ, it follows that $\mu\left(E_{f-g}\right) \leq \mu\left(E_{f}\right)+\mu\left(E_{g}\right)$. Since $\mu\left(E_{f}\right), \mu\left(E_{g}\right) \rightarrow 0$, it follows that $\mu\left(E_{f-g}\right) \rightarrow 0$ so that $g(x)=f(x)$ almost everywhere.

Theorem 122 (Lebesgue) Let (X, \mathfrak{A}, μ) be a measurable space with $\mu(X)<$ ∞, $\left\{f_{n}: n \in \mathbb{N}\right\} \cup\{f\} \subset \mathcal{L}^{0}(\mu)$ such that $f_{n} \rightarrow f$ almost everywhere. Then $f_{n} \Longrightarrow f$.

That is, on a set of finite measure, almost every convergence implies convergence in measure.
Proof. We will prove the theorem for the case $f_{n} \rightarrow f$ everywhere where f_{n}, f are finite everywhere. The result will then follow directly from this fact as "everywhere \Longrightarrow almost everywhere".

Consider the error set $\mathcal{E}_{k}(\epsilon)=\left\{x:\left|f_{k}-f\right| \geq \epsilon\right\}$. Our goal is to show that $\mu\left(E_{n}(\epsilon)\right) \rightarrow 0$ where

$$
E_{n}(\epsilon)=\bigcup_{k=n}^{\infty} \mathcal{E}_{k}(\epsilon)
$$

Defining $E_{n}(\epsilon)$ this way gives us a decreasing sequence $E_{1}(\epsilon) \supset E_{2}(\epsilon) \supset \ldots$ Since we have convergence of f_{n}, we have $\mu\left(E_{1}(\epsilon)\right)<\infty$ so that

$$
\mu\left(E_{n}(\epsilon)\right) \rightarrow \mu\left(\bigcap_{n=1}^{\infty} E_{n}(\epsilon)\right)
$$

by continuity of measure. We now claim that

$$
\bigcap_{n=1}^{\infty} E_{n}(\epsilon)
$$

is empty: if

$$
x \in \bigcap_{n=1}^{\infty} E_{n}(\epsilon)
$$

then for every $n, \exists N \geq n$ such that $\left|f_{n}(x)-f(x)\right| \geq \epsilon$. Thus, f_{n} does not converge, a contradiction. Thus, $\mu\left(\mathcal{E}_{n}(\epsilon)\right) \rightarrow 0$. Since $0 \leq \mu\left(\mathcal{E}_{n}(\epsilon)\right) \leq \mu\left(E_{n}(\epsilon)\right)$, it follows the $f_{n} \Longrightarrow f$.

Converse is not true!
Example 123 Consider $X=[0,1]$, the Lebesgue Measure and sequence $f_{n}=$ $\chi_{\left[\frac{j}{2^{k}}, \frac{j+1}{2^{k}}\right]}$ where $k=\left\lfloor\log _{2} n\right\rfloor$ and $j=n-2^{k}$. This sequence is called the Type Writer sequence. The first five terms of the sequence are $\chi_{\left[0, \frac{1}{2}\right]}, \chi_{\left[\frac{1}{2}, 1\right]}, \chi_{[0,1 / 4]}$, $\chi_{\left[\frac{1}{4}, \frac{1}{2}\right]}$. As n increases, the intervals shrink further. Thus, for $\epsilon>0$, the measure of the set $E_{n}=\left\{x:\left|f_{n}(x)\right| \geq \epsilon\right\}$ approaches zero so that $f_{n} \Longrightarrow \mathbf{0}$, the zero function, so we have convergence in measure. Moreover, each f_{n} is finite, hence is finite almost everywhere. However, for any $x \in[0,1], f_{n}$ does not converge to any function since the sequence is oscillating. Hence f_{n} does not converge anywhere.

The finiteness condition is necessary, as well. Consider $f_{n}=\chi_{(n, n+1)}$ so that $f_{n} \longrightarrow f \equiv 0$ almost everywhere. However, for $\epsilon=1 / n$, and $n>1, \mathfrak{m}_{1}\left(E_{n}\right)=$ $\mathfrak{m}_{1}\left(\left\{x:\left|f_{n}(x)\right| \geq 1 / n\right\}\right)=\mathfrak{m}_{1}(n, n+1)=1$ and this does not converge to zero.

An even stronger statement to Lebesgue is the following:
Theorem 124 (Reisz) Every sequence that converges in measure contains a subsequence which converges almost everywhere to the same limit.

Theorem $125 \operatorname{Let}(X, \mathfrak{A}, \mu)$ be a measurable space, $\left\{f_{n}: n \in \mathbb{N}\right\} \cup\{f\},\{F\} \subset$ $\mathcal{L}^{1}(\mu)$ such $f_{n} \Longrightarrow f$ and $\left|f_{n}\right| \leq F$. Then

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

This is not Lebesgue's Dominated Convergence Theorem since we have convergence in measure, not the usual point-wise convergence. That is, for a bounded sequence which converges in measure, the integrals coverge.
Proof. We first claim that that $|f| \leq F$ almost everywhere
To see this, we note that $\left|f_{n}\right| \leq F$ for all n tells us that

$$
\sup _{n \geq N}\left|f_{n}\right| \leq F \Longrightarrow \lim _{N \rightarrow \infty} \sup _{n \geq N}\left|f_{n}\right|=|f| \leq F
$$

Case I
Assume that $\mu(X)<\infty$.
Since $|f| \leq F$, we can assert, by triangle inequality, that $\left|f_{n}-f\right| \leq 2 F$ is valid for all x. Now let $\mathcal{E}_{n}(\epsilon)=\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}$. Such a collection is measurable. Then,

$$
\int_{X}\left|f_{n}-f\right| d \mu=\int_{\mathcal{E}_{n}(\epsilon)}\left|f_{n}-f\right| d \mu+\int_{X \backslash \mathcal{E}_{n}(\epsilon)}\left|f_{n}-f\right| d \mu
$$

The first sum is sort of a global estimate (i.e. $\leq 2 F$) whereas the second sum is a local one (i.e. $<\epsilon$). Since $X \backslash \mathcal{E}_{n}(\epsilon)=\left\{x \in X:\left|f_{n}(x)-f(x)\right|<\epsilon\right\}$, we must have

$$
\int_{X}\left|f_{n}-f\right| d \mu \leq \int_{\mathcal{E}_{n}(\epsilon)} 2 F d \mu+\epsilon \mu(X)
$$

For a fixed ϵ, by Lemma 101, $\mu\left(\mathcal{E}_{n}(\epsilon)\right) \rightarrow 0$ tells us that

$$
\int_{X}\left|f_{n}-f\right| d \mu \leq \epsilon \mu(X)
$$

We do not know if the limits exist, yet we can apply limsup on both sides to get.

$$
\lim _{n \rightarrow \infty} \sup _{k \geq n} \int_{X}\left|f_{n}-f\right| d \mu \leq \epsilon \mu(X)
$$

Notice that in the equality, nothing depends on n on the right side and everything on the left is true for every ϵ. Thus, we can let $\epsilon \rightarrow 0$ to get

$$
\lim _{n \rightarrow \infty} \sup _{k \geq n} \int_{X}\left|f_{k}(x)-f(x)\right| d \mu=0
$$

Now,

$$
\begin{aligned}
0 & \leq \int_{X}\left|f_{n}(x)-f(x)\right| d \mu \\
& \Longrightarrow 0 \leq \lim _{n \rightarrow \infty} \inf _{k \geq n} \int_{X}\left|f_{n}(x)-f(x)\right| d \mu \leq \lim _{n \rightarrow \infty_{k \geq n}} \sup _{X} \int_{X}\left|f_{k}(x)-f(x)\right| d \mu=0
\end{aligned}
$$

so that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}(x)-f(x)\right| d \mu=0
$$

Since

$$
\left|\int_{X}\left(f_{n}(x)-f(x)\right) d \mu\right| \leq \int_{X}\left|f_{n}(x)-f(x)\right| d \mu
$$

we can apply limit on both sides to conclude that

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n}(x) d \mu=\int_{X} f(x) d \mu
$$

Case II
Now assume that $\mu(X)=\infty$. It can be shown that $\forall g \in \mathcal{L}^{1}(\mu)$ with $g \geq 0$, $\exists A \in \mathfrak{A}$ such that $\mu(A)<\infty$ and $\int_{X \backslash A} g d \mu<\epsilon$. We use this without proof.

Then, $\left|f_{n}-f\right| \geq 0$ and $\left|f_{n}-f\right| \in \mathcal{L}^{1}(\mu)$. Use this and the continuity of φ_{f} (.) to prove the second case. The plan would be to use $\int_{X}\left|f_{n}-f\right| d \mu=$ $\int_{A}\left|f_{n}-f\right| d \mu+\int_{X \backslash A}\left|f_{n}-f\right| d \mu$. Thus, $\int_{X \backslash A}\left|f_{n}-f\right| d \mu \leq \int_{X \backslash A} 2 F d \mu$. Now use $g=2 F$.

We cannot hammer uniform continuity in here because $\mu(X \backslash A)=\infty$.
The assumption of boundedness of the sequence is essential, even if the space has finite measure.

Example 126 Consider $X=(0,1), f_{n}=n \chi_{(0,1 / n)}$. We have convergence in measure to the zero function. However,

$$
\int_{X} f_{n} d \mu=n \mu(0,1 / n)=1
$$

for all n so that we do not have convergence of integrals.
Problem 127 Let (X, \mathfrak{A}, μ) be a measurable space, with $\mu(X)<\infty$. Show that the sequence $\left\{f_{n}: n \in \mathbb{N}\right\}$ converges in measure to f if and only if

$$
\lim _{n \rightarrow \infty} \int_{X} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=0
$$

Solution 128 Let $\epsilon>0$ and $E_{n}=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}$. Since $X=E_{n} \cup$ E_{n}^{c}, we have

$$
\int_{X} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu=\int_{E} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+\int_{E^{c}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu
$$

By second part of Lemma 101, the first limit of the first integral on the right is zero. For the second integral, we have $E_{n}^{c}=\left\{x:\left|f_{n}(x)-f(x)\right|<\epsilon\right\}$. Note that $\frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}<\left|f_{n}-f\right|<\epsilon$ so that

$$
\left|\int_{E_{n}^{c}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu\right| \leq \int_{E_{n}^{c}}\left|\frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|}\right| d \mu<\int_{E_{n}^{c}} \epsilon d \mu=\epsilon \mu\left(E_{n}^{c}\right)<\epsilon \mu(X)
$$

Thus, in the limit, this integal is zero, as well.
Conversely, assume that the sequence does not converge in measure. That is, $\exists \epsilon>0$ such that $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right) \neq 0$ where $E_{n}=\left\{x:\left|f(x)-f_{n}(x)\right| \geq \epsilon\right\}$. That is, $\exists \delta>0$ such that $\forall N,\left|\mu\left(E_{n}\right)\right| \geq \delta$ for some $n<N$. Since $E_{n} \subset X$, we have
$\int_{X} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \geq \int_{E_{n}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \geq \int_{E_{n}} \frac{\epsilon}{1+\epsilon} d \mu=\frac{\epsilon}{1+\epsilon} \mu\left(E_{n}\right) \geq \frac{\epsilon}{1+\epsilon} \delta$
so that the sequence of integrals does not converge, a contradiction.

3.6 Riemann Integral

Definition 129 The Riemann integral of a function f is defined as the number

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum f\left(\xi_{k, n}\right)\left(x_{k, n}-x_{k-1, n}\right)
$$

where $a=x_{1, n}<x_{2, n}<\ldots<x_{n, n}=b$ and $\xi_{k, n} \in\left[x_{k-1, n}, x_{k, n}\right]$
The first condition is that size of every partitions tends to zero and that the limit does not depend on $\xi_{k, n}$. A very important example is as follows

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

in which case the integral does depend on $\xi_{k, n}$.
If f is continuous, then the integral exists. The axioms of Lebesgue measure can be given as follows: define

$$
\Psi_{f}(\Delta)=\int_{a}^{b} f(x) d x
$$

where Δ is a compact interval. Then, the following hold

1. $\Psi_{f}\left(\Delta_{1}\right)+\Psi_{f}\left(\Delta_{2}\right)=\Psi_{f}(\Delta)$ where $\Delta_{1}=[a, c]$ and $\Delta_{2}=[c, b]$. This is where the trouble comes in (the end points of intervals should match).
2. $\Psi_{c}(\Delta)=c(b-a)$ where c is a constant function taking value c everywhere.
3. If $f \leq g$, then $\Psi_{f}(\Delta) \leq \Psi_{g}(\Delta)$

These three properties uniquely define the Riemann integral. To show the integral exists (assuming that f is continuous) on closed intervals, by uniform continuity, we can have a δ that does not depend on x. We can then split the closed interval $[a, b]$ by δ to get $f(\xi)-\epsilon \leq f(x) \leq f(\xi)+\epsilon$, which leads to the definition of the Riemann integral

Thus, instead of using the definition of Riemann integral, we could use the three axioms. These three already hold for the Lebesgue integral, thus the mantra "Riemann Integral \Longrightarrow Lebesgue Integral" for a compact domain.

Theorem 130 Let $f \in \mathcal{C}([a, b])$. Then, $f \in \mathcal{L}^{1}\left(\mathfrak{m}_{1}\right)$ and

$$
\int_{[a . b]} f d \mathfrak{m}_{1}=\int_{a}^{b} f(x) d x
$$

Proof. $f^{-1}(a, \infty)$, by continuity, is open and every open set is measurable. That is, $f^{-1}(a, \infty) \in \mathfrak{M}_{1}$. Now, $|f(x)| \leq M$ for every $x \in[a, b]$ and $\mathfrak{m}_{1}([a, b])=$ $b-a$. Note that adding or subtracting c from an interval (to make the two intervals disjoint) doesn't make much a difference since it is just erasing or adding a set of measure 0 . Thus, $f \in \mathcal{L}^{1}\left(\mathfrak{m}_{1}\right)$. This essentially means

$$
\varphi_{f}(\Delta)=\int_{\Delta} f d \mathfrak{m}_{1}
$$

By uniqueness, $\varphi_{f}(\Delta)=\Psi_{f}(\Delta)$.
The converse, of course fails. Recall the Dirichlet criterion for improper integrals: if the Riemann integral of a function f is uniformly bounded over all intervals, and g is a monotonically decreasing non-negative function, then the Riemann integral of $f g$ is a convergent improper integral. Therefore, the Riemann integral is defined in

$$
\int_{1}^{\infty} \frac{\sin x}{x} d x
$$

if we take $g(x)=1 / x$ and $f(x)=\sin x$. However, it has no chance of being summable because

$$
\int_{(1, \infty)}\left|\frac{\sin x}{x}\right| d \mathfrak{m}_{1}=\infty
$$

We will prove rigorously the above when we discuss functions of bounded variation, but for now, let us take that on faith.

There are ways to work around this limitation:
Theorem 131 Let $f \in \mathcal{C}([a, b))$ where $b \in \mathbb{R} \cup\{\infty\}$. Then, $f \in \mathcal{L}^{1}\left(\mathfrak{m}_{1}\right) \Longleftrightarrow$

$$
\int_{a}^{b}|f(x)| d x=\lim _{t \rightarrow b} \int_{a}^{b}|f(x)| d x<\infty
$$

In this case,

$$
\int_{a}^{b}|f(x)| d x=\int_{[a, b)} f d \mathfrak{m}_{1}
$$

Proof. (\Longrightarrow)
$f \in \mathcal{L}^{1}\left(\mathfrak{m}_{1}\right) \Longrightarrow|f| \in \mathcal{L}^{1}\left(\mathfrak{m}_{1}\right)$. If $t<b$, then $f \in \mathcal{C}([a, t])$. By the previous result,

$$
\begin{aligned}
\int_{a}^{t}|f(x)| d x & =\int_{[a, t]}|f| d \mathfrak{m}_{1} \\
& =\int_{[a, b)}|f| d \mathfrak{m}_{1}-\int_{(t, b)}|f| d \mathfrak{m}_{1}
\end{aligned}
$$

Our goal is to show that

$$
\lim _{t \rightarrow b} \int_{(t, b)}|f| d \mathfrak{m}_{1}=0
$$

If $b \in \mathbb{R}$, then it follows trivially since $\mathfrak{m}_{1}((t, b)) \rightarrow 0$. If $b=\infty$, consider a monotonically increasing, unbounded sequence $\left\{a_{n}: n \in \mathbb{N}\right\}$ with $a_{1}=t$. Then,

$$
\lim _{t \rightarrow b} t=\lim _{n \rightarrow \infty} a_{n}
$$

We can then consider the decreasing sequence of intervals $\left(a_{n}, b\right) \supset\left(a_{n+1}, b\right)$.
Let $E_{k}=\bigcap_{n=k}^{\infty}\left(a_{n}, b\right)$. Then, $E_{k} \subset E_{k+1}$ so that by Absolute Continuity of the Lebesgue measure,

$$
\lim _{t \rightarrow b} \int_{(t, b)}|f| d \mathfrak{m}_{1}=\varphi_{|f|}\left(\bigcap_{n=1}^{\infty}\left(a_{n}, b\right)\right)=\lim _{n \rightarrow \infty} \varphi_{|f|}\left(E_{n}\right)=0
$$

(\Longleftarrow) If the Riemann integral exists, then we need to prove that the Lebesgue integral exists, provided that

$$
\int_{a}^{b}|f(x)| d x=\lim _{t \rightarrow b} \int_{a}^{b}|f(x)| d x<\infty
$$

If $t<b$, by Theorem 130,

$$
\varphi_{|f|}([a, t])=\int_{[a, t]}|f| d \mathfrak{m}_{1}=\int_{a}^{t}|f(x)| d x
$$

Choose $\left\{t_{n}: n \in \mathbb{N}\right\}$ such that $t_{n} \nearrow b$. Then, $\left[a, t_{1}\right] \subset\left[a, t_{2}\right] \subset \ldots$. Since $\varphi_{|f|}$ is a measure, then, by continuity of measure,

$$
\int_{a}^{b}|f(x)| d x=\lim _{t \rightarrow b} \int_{a}^{t}|f(x)| d x=\lim _{t \rightarrow b} \int_{[a, t]}|f| d \mathfrak{m}_{1}=\lim _{n \rightarrow \infty} \varphi_{|f|}\left(\left[a, t_{n}\right]\right)<\infty .
$$

Problem 132 Let $f(x)=x^{-1 / 2}$ for $x \in(0,1]$ with $f(0)=1$. Without referring to Riemann integration, prove that f is summable with respect to \mathfrak{m}_{1}

Solution 133 Let

$$
\varphi=\sum_{i=1}^{n} c_{i} \chi_{A_{i}} \leq f
$$

be a simple function with A_{i} being the partition of $(0,1]$. Then,

$$
\int_{(0,1]} \phi d \mathfrak{m}_{1}=\sum_{i=1}^{n} c_{i} \mathfrak{m}_{1}\left(A_{i} \cap(0,1]\right)<\infty
$$

and so

$$
\sup \left\{\int_{E} \psi d \mu: \psi \text { simple, } 0 \leq \psi \leq f \text { on } E\right\}=\int_{E} f d \mu<\infty
$$

3.7 Product Measures

The goal of this section is to define product of measures, and, therefore, multiple integrals. That is, $d A=d x d y=d \mathfrak{m}_{1} d \mathfrak{m}_{1}=d \mathfrak{m}_{2}$ where the product commutes. This is necessary since not in all cases do we get an iterated integral. Proving this is the main motivation, so we can ultimately compute

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

Some notation: we will have two measure spaces $\left(X, \mathfrak{A}_{X}, \mu_{X}\right)$ and $\left(Y, \mathfrak{A}_{Y}, \mu_{Y}\right)$ and define $\mathcal{P}=\left\{A \times B: A \in \mathfrak{A}_{X}\right.$ and $\left.B \in \mathfrak{A}_{Y}\right\}$. This is at least a semiring but, sadly, at most a semiring. The fact that \mathcal{P} is a semiring follows from Problem 26. To show that the product of two measures is not a measure, even if the measure is complete, consider $X=[0,1]=Y$ and let $\mu_{X}=\mu_{Y}=\mathfrak{m}_{1}$. Let A be a nonmeasurable susbet of $[0,1]$. Then, $A \times\{0\} \notin \mathcal{P}$. Note that $A \times\{0\} \subset[0,1] \times\{0\}$ and the latter has measure zero. Now take $E=\left[0, \frac{1}{4}\right]$ and $F=\left[\frac{3}{4}, 1\right]$. Then, clearly $E \cup F \in \mathfrak{A}_{X}=\mathfrak{A}_{Y}$. Moreover, $E \times E, F \times F \in \mathcal{P}$. However, $(E \times E) \cup(F \times F) \notin \mathcal{P}$.

Since we've seen that we can construct a measure using an ordinary set function by Lebesgue-Carathéodory theorem, it would not be outlandish to propose a set function $\mu_{0}(A \times B)=\mu_{X}(A) . \mu_{Y}(B)$, which is naturally welldefined on \mathcal{P}. Let us prove that it satisfies the hypothesis of the LebesgueCarathéodory theorem.

Lemma $134 \mu_{0}$ is a pre-measure.
Proof. P1 $\mu_{0}(\varnothing)=\mu_{X}(A) \cdot \mu_{Y}(\varnothing)$ or $\mu_{X}(\varnothing) \cdot \mu_{Y}(B)$ for any $A \in \mathfrak{A}_{X}$ or $B \in$ \mathfrak{A}_{Y}, and both are zero.
$\mathbf{P} 2$ To show that μ_{0} is finitely additive, let $\left\{A_{j}: 1 \leq j \leq n\right\} \subset \mathfrak{A}_{X}$ and $\left\{B_{k}: 1 \leq k \leq m\right\} \subset \mathfrak{A}_{Y}$ be collections of disjoint sets and let

$$
A=\bigcup_{j=1}^{n} A_{j} \text { and } B=\bigcup_{k=1}^{m} B_{k}
$$

Then,
$\mu_{0}(A \times B)=\mu_{X}(A) \mu_{Y}(B)=\left(\sum_{i=1}^{n} \mu\left(A_{i}\right)\right)\left(\sum_{k=1}^{m} \mu\left(B_{k}\right)\right)=\sum_{i=1}^{n} \sum_{k=1}^{m} \mu\left(A_{i}\right) \mu\left(B_{k}\right)$
On the other hand, since

$$
A \times B=\left(\bigcup_{j=1}^{n} A_{j}\right) \times\left(\bigcup_{k=1}^{m} B_{k}\right)=\bigcup_{(j, k)}^{(n, m)}\left(A_{i} \times B_{k}\right)
$$

we therefore have equality in both sides.

P3 For countable monotonicity, let

$$
E=A \times B \subset \bigcup_{j=1}^{\infty} A_{j} \times B_{j}=\bigcup_{j=1}^{\infty} E_{j}
$$

where $E_{j}=A_{j} \times B_{j} \in \mathcal{P}$. We need to show that, for E,
$\mu_{0}(E)=\mu_{X}(A) \mu_{Y}(B) \leq \sum_{j=1}^{\infty} \mu_{X}\left(A_{j}\right) \mu_{Y}\left(B_{j}\right)=\sum_{j=1}^{\infty} \mu_{0}\left(A_{j} \times B_{j}\right)=\sum_{j=1}^{\infty} \mu_{0}\left(E_{j}\right)$
Define

$$
E^{x}= \begin{cases}B & x \in A \\ \varnothing & x \notin A\end{cases}
$$

Then,

$$
E^{x} \subset \bigcup_{j=1}^{\infty} E_{j}^{x}
$$

where

$$
E_{j}^{x}=\left\{\begin{array}{cc}
B_{j} & x \in A_{j} \\
\varnothing & x \notin A_{j}
\end{array}\right.
$$

It follows that, for $x \in X$,

$$
\mu_{Y}\left(E^{x}\right) \leq \sum_{j=1}^{\infty} \mu_{Y}\left(E_{j}^{x}\right)
$$

This is because $x \in A$ implies

$$
\mu_{Y}(B) \leq \sum_{j=1}^{\infty} \mu_{Y}\left(E_{j}^{x}\right)
$$

and if $x \notin A$,

$$
\mu_{Y}(\varnothing)=0 \leq \sum_{j=1}^{\infty} \mu_{Y}\left(E_{j}^{x}\right)
$$

Also, $\mu_{Y}\left(E^{x}\right)=0$ if, for each $j, \chi_{A_{j}}(x)=0$, assuming that no B_{j} is null. It follows that

$$
\mu_{X}(A) \mu_{Y}(B) \leq \sum_{j=1}^{\infty} \mu_{X}\left(A_{j}\right) \mu_{Y}\left(B_{j}\right)
$$

Now, by Lebesgue-Carathéodory theorem, we can extend μ_{0} to a measure $\mu=\mu_{X} \otimes \mu_{Y}$, on some σ-algebra on $X \times Y$.

Example 135 Consider \mathfrak{m}_{r} on \mathbb{R}^{r} and \mathfrak{m}_{s} on \mathbb{R}^{s}. Then, $\mathfrak{m}_{r} \otimes \mathfrak{m}_{s}$ is a measure on \mathbb{R}^{r+s}.

This is also the same as the canonical measure on \mathbb{R}^{r+s} since they are defined on the same σ-algebra and agree on each element of the σ-algebra. A rigorous proof of this fact will be skipped.

Definition 136 A measure μ is called σ-finite if X can be written as a countable union of measurable sets, each of finite measure.

Example $137 \mathfrak{m}_{1}$ on \mathbb{R}, where $X_{j}=\left[-2^{j}, 2^{j}\right]$
Example 138 The counting measure is not σ-finite on \mathbb{R} since any infinite set has measure infinity yet may not cover \mathbb{R}.

For the rest of this section, we assume that all measures are σ-finite and complete. Let $\left(X, \mathfrak{A}_{X}, \mu_{X}\right)$ and $\left(Y, \mathfrak{A}_{Y}, \mu_{Y}\right)$ be two such measure spaces. Let $\left(Z, \mathfrak{A}_{Z}, \mu_{Z}\right)$ where $Z=X \times Y$ be the completion of the product spaces.

Proposition $139\left(Z, \mathfrak{A}_{Z}, \mu_{Z}\right)$ is σ-finite.
Proof. Let

$$
X=\bigcup_{i=1}^{\infty} A_{i} \text { and } Y=\bigcup_{i=1}^{\infty} B_{i}
$$

Then, $A_{i}, B_{i} \in \mathcal{P}=\mathfrak{A}_{X} \times \mathfrak{A}_{Y}$ and since $\mu_{0}=\left.\mu\right|_{\mathcal{P}}$, the result follows.
Lemma 140 If $\left(Z, \mathfrak{A}_{Z}, \mu_{Z}\right)$ is the complete measurable space obtained from premeasure μ_{0} on $\mathcal{P}=\mathfrak{A}_{X} \times \mathfrak{A}_{Y}$, then for any $E \in \mathfrak{A}$, $\exists G$ with $E \subset G$ such that $\mu(G \backslash E)=0$ and

$$
G=\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} A_{k, n},
$$

where $A_{k, n} \in \mathcal{P}$.
Proof. That fact that we can always find a G with the given measure holds true because of completeness. If E is a bounded region, then we can have rectangles $A_{k, n}$ that determine this region. If E is unbounded, then the result is trivially true.

We now prove Fubini's theorem for product of characteristics functions, which is basically a variant of Cavalieri's Principle (which we state without proof):

Theorem 141 (Cavalieri's Principle) Let $\left(X, \mathfrak{A}_{X}, \mu_{X}\right)$ and $\left(Y, \mathfrak{A}_{Y}, \mu_{Y}\right)$ be two σ-finite measure spaces. Let $\left(Z, \mathfrak{A}_{Z}, \mu_{Z}\right)$ where $Z=X \times Y$ be the completion of the product spaces. Let C be a measurable set in \mathfrak{A}_{Z} and $C^{x}=$ $\{y \in Y:(x, y) \in C\}$. Then

1. For almost every $x, C^{x} \in \mathfrak{A}_{y}$
2. The function $x \longmapsto \mu_{Y}\left(C^{x}\right) \mu_{X}$-is measurable
3. The integral over C can be calculated by iterations:

$$
v(C)=\left(\mathfrak{m}_{r} \otimes \mathfrak{m}_{s}\right)(C)=\int_{X} \mu_{Y}\left(C^{x}\right) d \mu_{X}
$$

The generalization of Cavalieri's Principle to non-negative functions allows functions to be integrated in the product space, even if they are not summable.

This allows us to show that μ_{0}, the pre-measure obtained by the product of measure, is countably additive.
Proof. We know that μ_{0} is countably subadditive by Lemma 134. Let $\left\{A_{j} \times B_{j}: j \in \mathbb{N}\right\}$ be a pairwise disjoint and let

$$
E=A \times B=\bigcup_{n=1}^{\infty} E_{j}
$$

where $E_{j}=A_{j} \times B_{j}$. Then, for each $(x, y) \in X \times Y$, note that $\chi_{A_{j} \times B_{j}}(x, y)=$ $\chi_{A_{j}}(x) \chi_{B_{j}}(y)$. Thus,

$$
\chi_{E}(x, y)=\sum_{n=1}^{\infty} \chi_{A_{j}}(x) \chi_{B_{j}}(y)
$$

Since we have $\chi_{B_{j}}(y) \mu_{Y}$-measurable, the integral

$$
\int_{Y} \sum_{j=1}^{\infty} \chi_{A_{j}}(x) \chi_{B_{j}}(y) d \mu_{Y}
$$

is well-defined. Moreover, by Monotone Convergence Theorem,

$$
\int_{Y} \lim _{n \rightarrow \infty} \sum_{j=1}^{n} \chi_{A_{j}}(x) \chi_{B_{j}}(y) d \mu_{Y}=\lim _{n \rightarrow \infty} \int_{Y} \sum_{j=1}^{n} \chi_{A_{j}}(x) \chi_{B_{j}}(y) d \mu_{Y}
$$

so that by linearity of measure,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{Y} \sum_{n=1}^{n} \chi_{A_{j}}(x) \chi_{B_{j}}(y) d \mu_{Y}=\lim _{n \rightarrow \infty} \sum_{n=1}^{n} \int_{Y} \chi_{A_{j}}(x) \chi_{B_{j}}(y) d \mu_{Y} \\
&=\lim _{n \rightarrow \infty} \sum_{n=1}^{n} \chi_{A_{j}}(x) \int_{Y} \chi_{B_{j}}(y) d \mu_{Y}=\sum_{n=1}^{\infty} \chi_{A_{j}}(x) \int_{Y} \chi_{B_{j}}(y) d \mu_{Y}
\end{aligned}
$$

Note that

$$
\int_{Y} \chi_{B_{j}}(y) d \mu_{Y}=\mu_{Y}\left(B_{j}\right)
$$

so that we have

$$
\sum_{n=1}^{\infty} \chi_{A_{j}}(x) \mu_{Y}\left(B_{j}\right)
$$

Now, $\chi_{A_{j}}(x)$ is $\mu_{X^{-}}$-measurable so that

$$
\int_{X} \sum_{n=1}^{\infty} \chi_{A_{j}}(x) \mu_{Y}\left(B_{j}\right) d \mu_{X}
$$

Applying the same steps as above gives us

$$
\sum_{n=1}^{\infty} \mu_{Y}\left(B_{j}\right) \int_{X} \chi_{A_{j}}(x) d \mu_{X}=\sum_{n=1}^{\infty} \mu_{Y}\left(B_{j}\right) \mu_{X}\left(A_{j}\right)=\sum_{n=1}^{\infty} \mu_{X}\left(A_{j}\right) \mu_{Y}\left(B_{j}\right)
$$

Now,

$$
\begin{aligned}
& \int_{X}\left(\int_{Y} \chi_{E}(x, y) d \mu_{Y}\right) d \mu_{X}=\mu_{Y}\left(E^{y}\right) \int_{X} \chi_{E^{x}}(x) d \mu_{X} \\
= & \mu_{Y}\left(E^{y}\right) \mu_{X}\left(E^{x}\right)=\mu_{X}\left(E^{x}\right) \mu_{Y}\left(E^{y}\right)=\mu_{X}(A) \mu_{Y}(B)=\mu_{0}(E)
\end{aligned}
$$

where

$$
E^{x}= \begin{cases}B & x \in A \\ \varnothing & x \notin A\end{cases}
$$

and

$$
E^{y}=\left\{\begin{array}{cc}
A & x \in B \\
\varnothing & x \notin B
\end{array}\right.
$$

Thus,

$$
\mu_{0}(E)=\sum_{n=1}^{\infty} \mu_{X}\left(A_{j}\right) \mu_{Y}\left(B_{j}\right)=\sum_{n=1}^{\infty} \mu_{0}\left(E_{j}\right)
$$

Let $\left(X, \mathfrak{A}_{X}, \mu_{X}\right)$ and $\left(Y, \mathfrak{A}_{Y}, \mu_{Y}\right)$ be measurable spaces, $\left(Z, \mathfrak{A}_{Z}, \mu_{Z}\right)$ be a completion of the product space $Z=X \times Y$ and let $f: Z \longrightarrow[0, \infty]$ be a non-negative function (not necessarily μ_{Z}-measurable) Define f_{y} such that $x \stackrel{f_{y}}{\longrightarrow} f(x, y)$ with the integral

$$
I(y)=\left\{\begin{array}{cc}
\int_{X} f_{y} d \mu_{X} & \text { if it exists } \\
0 & \text { otherwise }
\end{array}\right.
$$

Then, $I(y)$ exists for almost every y. Assuming that f is μ_{Z}-measurable, then

$$
\int_{Y} I(y) d \mu_{Y}=\int_{Z} f d v
$$

Theorem 142 (Tonelli) Let $\left(X, \mathfrak{A}_{X}, \mu_{X}\right)$ and $\left(Y, \mathfrak{A}_{Y}, \mu_{Y}\right)$ be two σ-finite measure spaces. Let $\left(Z, \mathfrak{A}_{Z}, \mu_{Z}\right)$ where $Z=X \times Y$ be the completion of the product spaces and let $f: Z \longrightarrow[0, \infty]$ be μ_{Z}-measurable, then

1. For almost every $y \in Y$, the following integral exists

$$
\int_{X} f_{y} d \mu_{X}
$$

2. Moreover, we have the iterated integral

$$
\int_{Y}\left(\int_{X} f_{y} d \mu_{X}\right) d \mu_{Y}=\int_{Z} f d \nu
$$

We can equivalently have f_{x} such that $y \stackrel{f_{x}}{\longmapsto} f(x, y)$, giving us

$$
\int_{Y}\left(\int_{X} f_{y}(x) d \mu_{X}\right) d \mu_{Y}=\int_{X}\left(\int_{Y} f_{x}(y) d \mu_{Y}\right) d \mu_{X}
$$

Theorem 143 (Fubini) Let $\left(X, \mathfrak{A}_{X}, \mu_{X}\right)$ and $\left(Y, \mathfrak{A}_{Y}, \mu_{Y}\right)$ be two σ-finite measure spaces. Let $\left(Z, \mathfrak{A}_{Z}, \mu_{Z}\right)$ where $Z=X \times Y$ be the completion of the product spaces. Let $f: Z \longrightarrow \mathbb{R}$ be μ_{Z}-summable. Then,

1. almost every $y \in Y$, the following integral exists

$$
\int_{X} f_{y} d \mu_{X}
$$

2. Moreover, we have the iterated integral

$$
\int_{Y}\left(\int_{X} f_{y} d \mu_{X}\right) d \mu_{Y}=\int_{Z} f d \nu
$$

Corollary 144 If $g(x)$ is summable on X and $h(y)$ is summable on Y, then $f(x, y)=g(x) h(y)$ is summable on Z. Moreover,

$$
\int_{Z} f(x, y) d v=\left(\int_{X} g d \mu_{X}\right)\left(\int_{Y} h d \mu_{Y}\right)
$$

However, we may still not have measurability! To get that, set $g_{1}(x, y)=$ $g(x)$ and $h_{1}(x, y)=h(y)$. In this case, g_{1} and h_{1} are measurable, then their product is measurable.

Problem 145 Let $\left(X, \mathfrak{A}_{X}, \mu_{X}\right)$ and $\left(Y, \mathfrak{A}_{Y}, \mu_{Y}\right)$ be σ-finite and complete measure spaces, g be summable on X and h be summable on Y. Show that $f(x, y)=$ $g(x) h(y)$ is summable on $X \times Y$ and that

$$
\int_{Z} f(x, y) d v=\left(\int_{X} g d \mu_{X}\right)\left(\int_{Y} h d \mu_{Y}\right)
$$

Solution 146 Note that X is \mathfrak{A}_{X}-measurable and Y is \mathfrak{A}_{Y}-measurable implies $X \times Y$ is measurable on the σ-algebra generated by $\mathfrak{A}_{X} \times \mathfrak{A}_{Y}$, say \mathfrak{A}_{Z}. Let $g_{1}(x, y)=g(x)$ and $h_{1}(x, y)=h(y)$. By Cavalieri's Principle, g_{1} and h_{1} are \mathfrak{A}_{Z}-measurable. Since the product of measurable functions is measurable, $f(x, y)$ is \mathfrak{A}_{Z}-measurable. We will show that $|f|$ is summable. By Toneli's Theorem,

$$
\int_{Z}|f(x, y)| d v=\int_{X} \int_{Y}\left|g_{1}(x, y) h_{1}(x, y)\right| d \mu_{Y} d \mu_{X}
$$

Now, $g_{1}(x, y)=g(x)$ and $h_{1}(x, y)=h(y)$ so that

$$
\begin{aligned}
& =\int_{X} \int_{Y}|g(x) h(y)| d \mu_{Y} d \mu_{X}=\int_{X} \int_{Y}|g(x)||h(y)| d \mu_{Y} d \mu_{X} \\
& =\int_{X}|g(x)| \int_{Y}|h(y)| d \mu_{Y} d \mu_{X}=\int_{X}|g(x)|\left(\int_{Y}|h(y)| d \mu_{Y}\right) d \mu_{X} \\
& =\left(\int_{X}|g(x)| d \mu_{X}\right)\left(\int_{Y}|h(y)| d \mu_{Y}\right)
\end{aligned}
$$

Now, since g and h are summable, then so is $|g|$ and $|h|$. Thus, the multiplicands in the last line are two finite numbers and, therefore, the product is finite. Thus, $|f|$ is summable so that f is summable. Thus, by Fubini's theorem,

$$
\int_{Z} f(x, y) d v=\left(\int_{X} g d \mu_{X}\right)\left(\int_{Y} h d \mu_{Y}\right)
$$

Problem 147 Let $\left(X, \mathfrak{A}_{X}, \mu_{X}\right)$ and $\left(Y, \mathfrak{A}_{Y}, \mu_{Y}\right)$ be measure spaces with $X=$ $Y=\mathbb{N}$ with μ_{X} and μ_{Y} counting measures. Define

$$
f(x, y)=\left\{\begin{array}{cc}
2-2^{-x} & x=y \\
-2+2^{-x} & x=y+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Show that f is measurable with respect to $\mu_{X} \otimes \mu_{Y}$. Does it contradict the Fubini's Theorem?

Solution 148 We have that $\mathfrak{A}_{Z}=2^{\mathbb{N}} \times 2^{\mathbb{N}}$ since $\mathfrak{A}_{X}=\mathfrak{A}_{Y}=2^{\mathbb{N}}$ so that every subset of $\mathbb{N} \times \mathbb{N}$ is measurable. Thus, the preimage of any measurable subset of
\mathbb{R} under f will naturally be measurable. Now,

$$
\begin{aligned}
& \int_{\mathbb{N}} \int_{\mathbb{N}} f(x, y) d \mu_{X} d \mu_{Y}=\int_{\mathbb{N}}\left(\int_{\mathbb{N}} f(x, y) d \mu_{X}\right) d \mu_{Y} \\
= & \int_{\mathbb{N}} \sum_{k=1}^{\infty} f(k, y) d \mu_{Y}=\int_{\mathbb{N}} \sum_{k=1}^{\infty} f_{k}(y) d \mu_{Y} \\
= & \sum_{k=1}^{\infty} \int_{\mathbb{N}} f_{k}(y) d \mu_{Y}=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} f(k, j) \\
= & \sum_{k=1}^{\infty}(f(k, 1)+f(k, 2)+\ldots) \\
= & \left\{\begin{array}{ccc}
f(1,1)+ & f(2,1)+ & f(3,1)+ \\
f(1,2)+ & f(2,2)+ & f(3,2)+ \\
f(1,3) & f(2,3) & f(3,3)+ \\
f(1,4) & f(2,4) & f(3,4)+ \\
\vdots & \ddots & \ldots+ \\
= & f(1,1)+f(2,1)+f(2,2)+f(3,2)+\ldots
\end{array}\right. \\
= & \left(2-2^{-1}\right)+\left(-2+2^{-2}\right)+\left(2-2^{-2}\right)+\left(-2+2^{-3}\right)+\ldots \\
= & 3 / 2-7 / 4+7 / 4-15 / 8+15 / 8+\ldots=3 / 2
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \int_{\mathbb{N}} \int_{\mathbb{N}} f(x, y) d \mu_{Y} d \mu_{X}=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} f(j, k) \\
= & \sum_{k=1}^{\infty}(f(1, k)+f(2, k)+\ldots) \\
= & \left\{\begin{array}{ccc}
f(1,1)+ & f(1,2)+ & f(1,3)+ \\
f(2,1)+ & f(2,2)+ & f(2,3)+ \\
f(3,1) & f(2,3) & f(3,3)+ \\
f(4,1) & f(2,4) & f(3,3)+ \\
\vdots & \ddots & \ldots+
\end{array}\right. \\
= & \sum_{k=1}^{\infty}-2^{-k}+2^{-k-1}=\sum_{k=1}^{\infty} 2^{-k-1}(-2+1) \\
= & \sum_{k=1}^{\infty} 2^{-k-1}=-\frac{1}{2} \sum_{k=1}^{\infty} 2^{-k}=-\frac{1}{2}
\end{aligned}
$$

Thus,

$$
\int_{\mathbb{N}} \int_{\mathbb{N}} f(x, y) d \mu_{X} d \mu_{Y} \neq \int_{\mathbb{N}} \int_{\mathbb{N}} f(x, y) d \mu_{Y} d \mu_{X}
$$

This is because f is not summable: $f^{+}(x, y)=2-2^{-x}$ for $x=y$. Thus, $f^{+}(x, y)=g(n)=2-2^{-n}$. On the other hand, $f^{-}(x, y)=-2+2^{-x}$ for
$x=y+1$. That is, $f^{-}(x, y)=h(n)=-2+2^{-n-1}$. Note that

$$
\int_{\mathbb{N}} g(n) d \mu=\sum_{n=1}^{\infty} 2-2^{-n}=\infty
$$

whereas

$$
\int_{\mathbb{N}} h(n) d \mu=\sum_{n=1}^{\infty}-2+2^{-n-1}=-\infty
$$

Thus, Fubini's theorem is not contradicted, since the hypothesis of Fubini's theorem are not satisfied.
Problem 149 Let $X=Y=[0,1]$, with μ_{X} being the Lebesge measure and μ_{Y} being the counting measure, \mathfrak{A}_{X} and \mathfrak{A}_{Y} both the Lebesgue σ-algebras. Show that $D=\{(x, y): x=y\} \subset X \times Y=Z$ is a measurable set with respect to $\nu=\mu_{X} \otimes \mu_{Y}$. Show that

$$
\int_{Z} \chi_{D} d \nu \neq \int_{X}\left(\int_{Y} \chi_{D}(x, y) d \mu_{Y}\right) d \mu_{X}
$$

Does it contradict the Fubini Theorem and why not?
Solution 150 Let $n \in \mathbb{N}$ and consider the square $[0,1] \times[0,1]$. Add $k-1$ equidistant points (with $0 \leq k \leq n-1$) on the diagonal. Using these, form k rectangles with heights $\frac{1}{n}, \frac{2}{n}, \ldots ., 1$ and widths $\frac{1}{n}$. Mathematically, form the sets $\left[\frac{k}{n}, \frac{k+1}{n}\right] \times\left[\frac{k}{n}, \frac{k+1}{n}\right]$. Let

$$
D_{n}=\bigcup_{k=0}^{n-1}\left(\left[\frac{k}{n}, \frac{k+1}{n}\right] \times\left[\frac{k}{n}, \frac{k+1}{n}\right]\right)
$$

Then, $D_{n} \in \mathfrak{A}_{Z}$ for each n. Moreover, by construction

$$
D=\bigcap_{n \in \mathbb{N}} D_{n}
$$

so that $D \in \mathfrak{A}_{Z}$. Next, it suffices to show that

$$
\int_{X}\left(\int_{Y} \chi_{D}(x, y) d \mu_{Y}\right) d \mu_{X} \neq \int_{Y}\left(\int_{X} \chi_{D}(x, y) d \mu_{X}\right) d \mu_{Y}
$$

since Fubini's theorem implies

$$
\int_{Y}\left(\int_{X} \chi_{D}(x, y) d \mu_{X}\right) d \mu_{Y}=\int_{Z} \chi_{D} d v
$$

and, therefore, the above are equal. We are essentially looking at the contrapositive of this statement. We evaluate each side of the above.

$$
\begin{aligned}
& \int_{X}\left(\int_{Y} \chi_{D}(x, y) d \mu_{Y}\right) d \mu_{X}=\int_{X} \mu_{Y}(\{y \in Y \mid y=x\}) d \mu_{X} \\
= & \int_{X} \mu_{Y}(\{y\}) d \mu_{X}=\int_{X} 1 d \mu_{X}=1 \mu_{X}([0,1])=1 .(1-0)=1
\end{aligned}
$$

whereas

$$
\begin{aligned}
& \int_{Y}\left(\int_{X} \chi_{D}(x, y) d \mu_{X}\right) d \mu_{Y} \\
= & \int_{Y} \mu_{X}(\{x \in X \mid x=y\}) d \mu_{Y} \\
= & \int_{Y} \mu_{X}(\{x\}) d \mu_{X}=\int_{Y} 0 d \mu_{Y}=0
\end{aligned}
$$

Again, this does not contradict Fubini's theorem because the space $\left([0,1], \mathfrak{A}_{Y}, \mu_{Y}\right)$ is not σ-finite: assume that we can split the uncountable set $[0,1]$ into a countable number of countable sets. Let

$$
[0,1]=\bigcup_{n=1}^{\infty} A_{n}
$$

where the collection $\left\{A_{n}\right\}_{n=1}^{\infty}$ is pairwise disjoint and each A_{n} is countable. Since the countable union of countable sets is countable, we have that $|[0,1]|=$ $|\mathbb{N}|$. That is, $\aleph_{0}=\mathfrak{c}$, a contradiction.

Problem 151 Let f, g be two increasing functions on $[0,1]$, measurable with respect to \mathfrak{m}_{1}. Prove that

$$
\int_{[0,1]} f g d \mathfrak{m}_{1} \geq\left(\int_{[0,1]} f d \mathfrak{m}_{1}\right)\left(\int_{[0,1]} f d \mathfrak{m}_{1}\right)
$$

Solution 152 If f and g are not summable, then $\int_{[0,1]} f d \mathfrak{m}_{1}=\int_{[0,1]} g d \mathfrak{m}_{1}=$ $\int_{[0,1]} f g d \mathfrak{m}_{1}=\infty$ and so the inequality holds. If either one of these, say f, is not summable, then $\int_{[0,1]} f d \mathfrak{m}_{1}=\infty \Longrightarrow \int_{[0,1]} f g d \mathfrak{m}_{1}=\infty$ so that again the inequality holds. Assume that both are summable. Let $Z=[0,1] \times[0,1]$ and $(x, y) \in[0,1] \times[0,1]$. Note that

$$
\begin{aligned}
& \int_{Z}(f(x)-f(y))(g(x)-g(y)) d \mathfrak{m}_{2} \\
= & \int_{[0,1]} \int_{[0,1]}(f(x)-f(y))(g(x)-g(y)) d \mathfrak{m}_{1}(x) d \mathfrak{m}_{1}(y) \\
= & \int_{[0,1]} \int_{[0,1]} f(x) g(x)-f(y) g(x)-f(x) g(y)+f(y) g(y) d \mathfrak{m}_{1}(x) d \mathfrak{m}_{1}(y)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{[0,1]}\left[\begin{array}{c}
\left(\int_{[0,1]} f(x) g(x) d \mathfrak{m}_{1}(x)\right)-\left(\int_{[0,1]} f(y) g(x) d \mathfrak{m}_{1}(x)\right)- \\
\left(\int_{[0,1]} f(x) g(y) d \mathfrak{m}_{1}(x)\right)+\left(\int_{[0,1]} f(y) g(y) d \mathfrak{m}_{1}(x)\right)
\end{array}\right] d \mathfrak{m}_{1}(y) \\
& =\int_{[0,1]}\left[\begin{array}{c}
\left(\int_{[0,1]} f(x) g(x) d \mathfrak{m}_{1}(x)\right)-\left(f(y) \int_{[0,1]} g(x) d \mathfrak{m}_{1}(x)\right)- \\
g(y)\left(\int_{[0,1]} f(x) d \mathfrak{m}_{1}(x)\right)+\left(f(y) g(y) \int_{[0,1]} d \mathfrak{m}_{1}(x)\right)
\end{array}\right] d \mathfrak{m}_{1}(y) \\
& =\int_{[0,1]}\left[\begin{array}{c}
\left(\int_{[0,1]} f(x) g(x) d \mathfrak{m}_{1}(x)\right)-\left(f(y) \int_{[0,1]} g(x) d \mathfrak{m}_{1}(x)\right)- \\
g(y)\left(\int_{[0,1]} f(x) d \mathfrak{m}_{1}(x)\right)+(f(y) g(y)(1-0))
\end{array}\right] d \mathfrak{m}_{1}(y) \\
& =\int_{[0,1]}\left(\int_{[0,1]} f(x) g(x) d \mathfrak{m}_{1}(x)\right) d \mathfrak{m}_{1}(y)-\int_{[0,1]}\left(f(y) \int_{[0,1]} g(x) d \mathfrak{m}_{1}(x)\right) d \mathfrak{m}_{1}(y)- \\
& \int_{[0,1]} g(y)\left(\int_{[0,1]} f(x) d \mathfrak{m}_{1}(x)\right) d \mathfrak{m}_{1}(y)+\int_{[0,1]}(f(y) g(y)) d \mathfrak{m}_{1}(y) \\
& =\left(\int_{[0,1]} f(x) g(x) d \mathfrak{m}_{1}(x)\right) \int_{[0,1]} d \mathfrak{m}_{1}(y)-\int_{[0,1]}\left(f(y) \int_{[0,1]} g(x) d \mathfrak{m}_{1}(x)\right) d \mathfrak{m}_{1}(y)- \\
& \int_{[0,1]} g(y)\left(\int_{[0,1]} f(x) d \mathfrak{m}_{1}(x)\right) d \mathfrak{m}_{1}(y)+\int_{[0,1]}(f(y) g(y)) d \mathfrak{m}_{1}(y) \\
& =\left(\int_{[0,1]} f(x) g(x) d \mathfrak{m}_{1}(x)\right)((1-0))-\left(\int_{[0,1]} f(y) d \mathfrak{m}_{1}(y)\right)\left(\int_{[0,1]} g(x) d \mathfrak{m}_{1}(x)\right)- \\
& \left(\int_{[0,1]} g(y) d \mathfrak{m}_{1}(y)\right)\left(\int_{[0,1]} f(x) d \mathfrak{m}_{1}(x)\right)+\int_{[0,1]}(f(y) g(y)) d \mathfrak{m}_{1}(y) \\
& =\left(\int_{[0,1]} f(x) g(x) d \mathfrak{m}_{1}(x)\right)-\left(\int_{[0,1]} f(x) d \mathfrak{m}_{1}(x)\right)\left(\int_{[0,1]} g(x) d \mathfrak{m}_{1}(x)\right)- \\
& \left(\int_{[0,1]} g(x) d \mathfrak{m}_{1}(x)\right)\left(\int_{[0,1]} f(x) d \mathfrak{m}_{1}(x)\right)+\int_{[0,1]}(f(x) g(x)) d \mathfrak{m}_{1}(x) \\
& =2\left(\int_{[0,1]} f(x) g(x) d \mathfrak{m}_{1}(x)\right)-2\left(\int_{[0,1]} f(x) d \mathfrak{m}_{1}(x)\right)\left(\int_{[0,1]} g(x) d \mathfrak{m}_{1}(x)\right)
\end{aligned}
$$

Now, if $x<y$, we have $f(x)-f(y) \leq 0$ and similarly $g(x)-g(y) \leq 0$. Thus, $(f(x)-f(y))(g(x)-g(y)) \geq 0$. If $x=y$, then $(f(x)-f(y))(g(x)-g(y))=$ 0 . If $x>y$, then $f(x)-f(y) \geq 0$ and similarly $g(x)-g(y) \geq 0$. Thus, in any case, $(f(x)-f(y))(g(x)-g(y)) \geq 0$. Thus,
$(f(x)-f(y))(g(x)-g(y)) \geq 0 \Longrightarrow \int_{Z}(f(x)-f(y))(g(x)-g(y)) d \mathfrak{m}_{2} \geq 0$

That is,
$2\left(\int_{[0,1]} f(x) g(x) d \mathfrak{m}_{1}(x)\right)-2\left(\int_{[0,1]} f(x) d \mathfrak{m}_{1}(x)\right)\left(\int_{[0,1]} g(x) d \mathfrak{m}_{1}(x)\right) \geq 0$
In other words,

$$
\int_{[0,1]} f g d \mathfrak{m}_{1} \geq\left(\int_{[0,1]} f d \mathfrak{m}_{1}\right)\left(\int_{[0,1]} g d \mathfrak{m}_{1}\right)
$$

4 Classification of Functions

4.1 Differentiability

Our ultimate goal for differentiability is to come up with nice properties of a function f such that the fundamental theorem of calculus holds. That is,

$$
F(x)=\int_{a}^{x} f(t) d t \Longrightarrow f=F^{\prime}
$$

for a nice enough f. Moreover, if f is summable, then we would want F to be continuous. The natural question we should be asking is under what conditions is F differentiable? This would help answering when $F^{\prime}=f$.

Problem 153 If

$$
F(x)=\int_{(-\infty, x)} f d \mathfrak{m}_{1}
$$

is it true that F is continuous?
Problem 154 Let $x_{n} \rightarrow x$. We need to show that $F\left(x_{n}\right) \rightarrow F(x)$. Note that

$$
\int_{\left(-\infty, x_{n}\right)} f d \mathfrak{m}_{1}=\int_{\mathbb{R}} \chi_{\left(-\infty, x_{n}\right]} f d \mathfrak{m}_{1}
$$

Thus, we can let $\chi_{\left(-\infty, x_{n}\right]} f=f_{n}$. Note that f_{n} is summable because f is, $f_{n} \rightarrow f$ pointwise and $\left|f_{n}\right| \leq f$. Thus, by Lebesgue's Dominated Convergence,

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \chi_{\left(-\infty, x_{n}\right]} f d \mathfrak{m}_{1}=\int_{-\infty}^{x} f d \mathfrak{m}_{1}=F(x)
$$

Before we get into this business, we prove the following useful lemma.
Definition 155 Let E be a measurable subset of \mathbb{R}. Let \mathcal{F} be a family of closed, non-degenerate covers such that $\forall \epsilon>0$ and $\forall x \in E$, there exists $I \in \mathcal{F}$ such that $\mathfrak{m}_{1}(I)<\epsilon$ and $x \in I . F$ is said to be a Vitali cover of E.

Theorem 156 (Vitali's Lemma) Let E be a measurable set such that $\mathfrak{m}_{1}^{*}(E)<$ ∞ and let \mathcal{F} be a Vitali Cover of E. Then, we can find disjoint intervals $I_{1}, \ldots, I_{n} \in \mathcal{F}$ such that

$$
\mathfrak{m}_{1}^{*}\left(E \backslash \bigcup_{k=1}^{n} I_{k}\right)<\epsilon .
$$

The proof is very geometric in nature.
Proof. We can find an open G with $E \subset G$ such that $\mathfrak{m}_{1}(G)<\infty$. We can always make I 's from \mathcal{F} smaller to put them all inside G. That is, $I \subset G$. This does not spoil our condition. This is particularly true since G is open.

If there exists a disjoint subfamily $\left\{I_{k}: 1 \leq k \leq n\right\} \subset \mathcal{F}$ such that

$$
E \subset \bigcup_{k=1}^{n} I_{k} .
$$

In this case, we trivially have

$$
\mathfrak{m}_{1}^{*}\left(E \backslash \bigcup_{k=1}^{n} I_{k}\right)=0 .
$$

If there is no such family, then proceed by induction: take any $I_{1} \in \mathcal{F}$. We need to choose the second one. From another subfamily $\mathcal{F}_{1}=\left\{I \in \mathcal{F}: I \cap I_{1}=\varnothing\right\}$. This is non-empty by assumption in this case. Now, for every $I \in \mathcal{F}$ in general and in particular, in \mathcal{F}_{1}, since $I \subset G$, we must have $\mathfrak{m}_{1}(I) \leq \mathfrak{m}_{1}(G)$. Since $\mathfrak{m}_{1}(G)<\infty$, we must have $s_{1}=\sup \left\{\mathfrak{m}_{1}(I): I \in \mathcal{F}_{1}\right\}<\infty$. Take any $I_{2} \in \mathcal{F}_{1}$ with $\mathfrak{m}_{1}(I)>s_{1} / 2$. On the n-th step, we have I_{1}, \ldots, I_{n} chosen. By procedure, these are pairwise disjoint. Let $\mathcal{F}_{n}=\left\{I \in \mathcal{F}: I \cap I_{1}=\varnothing, \ldots, I \cap I_{n}=\varnothing\right\}$. This is again possible for the same reason as above with $s_{n}=\sup \left\{\mathfrak{m}_{1}(I): I \in \mathcal{F}_{n}\right\}<$ ∞ so that we can choose $\mathfrak{m}_{1}\left(I_{n+1}\right)>s_{n} / 2$. The crucial step here relies on the fact that

$$
E \backslash \bigcup_{k=1}^{n} I_{k} \subset \bigcup_{k=n+1}^{\infty} 5 I_{k}
$$

where $5 I_{k}$ is the interval with the same midpoint as I_{k} but 5 times wider and this makes easy applications in higher dimensions. To prove this, we need to prove that 1) $\mathfrak{m}_{1}\left(I_{n}\right) \rightarrow 0$. This is because the pairwise disjoint family $\left\{I_{n}: n \in \mathbb{N}\right\}$ is covered by G. That is,

$$
\bigcup_{k=1}^{\infty} I_{k} \subset G
$$

so that

$$
\sum_{n=1}^{\infty} \mathfrak{m}_{1}\left(I_{n}\right) \leq m_{1}(G)<\infty .
$$

We also need to prove that

$$
x \in E \backslash \bigcup_{k=1}^{n} I_{k}
$$

so that $\exists I \in \mathcal{F}_{n}$ such that $x \in I$. However, $\exists I_{N}$ such that $I \cap I_{N} \neq \varnothing$. The overall strategy is to take this x and show that it is covered 5 times an interval. Assume that this is false. Then, $\forall N, I \cap I_{N}=\varnothing$, which means that $I \in \mathcal{F}_{N}$ for all N but this means that $s_{N} \geq \mathfrak{m}_{1}(I) \Longrightarrow \mathfrak{m}_{1}\left(I_{N}\right) \geq \mathfrak{m}_{1}(I) / 2$, a contradiction since I is fixed and $\mathfrak{m}_{1}(I) \nrightarrow 0$. 3) $N \geq n$. This holds because $I \in \mathcal{F}_{n}$ and so it is disjoint with I_{1}, \ldots, I_{n}. Take the first N for which $I_{N} \cap I \neq \varnothing$. In particular, $I \cap I_{1}=\varnothing, \ldots, I \cap I_{N-1}=\varnothing$. So, $I \in \mathcal{F}_{n}$ so that, the crucial thing, $\mathfrak{m}_{1}\left(I_{N}\right)>\mathfrak{m}_{1}(I) / 2$, which justifies the 5 scale. If $x \in I$, then distance from x to the middle of I_{N} is $\leq \mathfrak{m}_{1}(I)+\mathfrak{m}_{1}\left(I_{N}\right) / 2$ which is less than $5 / 2 \mathfrak{m}_{1}\left(I_{N}\right)$ so that $x \in 5 I_{N}$.

Now, choose n such that

$$
\sum_{j=n+1}^{\infty} \mathfrak{m}_{1}\left(I_{j}\right)<\epsilon / 5
$$

We can do this since the tail goes to zero. Now, the outer measure is monotonic hence

$$
\mathfrak{m}_{1}^{*}\left(E \backslash \bigcup_{k=1}^{n} I_{k}\right) \leq \mathfrak{m}_{1}^{*}\left(\bigcup_{j=n+1}^{\infty} 5 I_{j}\right) \leq \sum_{j=n+1}^{\infty} 5 \mathfrak{m}_{1}^{*}\left(5 I_{j}\right)<\epsilon
$$

The fact that Vitali's Lemma needs closed, nondegenerate intervals is crucial.
Example 157 Let E be any finite interval and $\epsilon>0$. For each $x \in E$, define $I_{x}=[x, x]$. Clearly,

$$
E \subset \bigcup_{x \in E} I_{x}
$$

Moreover, $\mathfrak{m}_{1}^{*}\left(I_{x}\right)=0$ for each x. In particular, for any $\epsilon>0$ and for any $x \in E$, we have $0=\mathfrak{m}_{1}^{*}\left(I_{x}\right)<\epsilon$ and $x \in I_{x}$, by construction. Then, for any n,

$$
\mathfrak{m}_{1}^{*}\left(E \backslash \bigcup_{k=1}^{n} I_{k}\right)=\mathfrak{m}_{1}^{*}(E)
$$

so that for $\epsilon \leq \mathfrak{m}_{1}^{*}(E)$, the conclusion of Vitali's lemma fails.
In fact, the Vitali lemma does not even extend to the case in which the covering collection consists of non-degenerate general (not necessarily closed) intervals.

Example 158 Consider the set $E=(0, j)$ for some fixed $j \in \mathbb{N}$. Then, $\mathfrak{m}_{1}^{*}(E)=j<\infty$. For each $x \in E$, define intervals $B\left(x, r_{x}\right)$ centered at x of radius

$$
r_{x}=\frac{\min (j, j-x)}{2}
$$

Now, consider the collection $\mathcal{F}=\left\{B\left(x, r_{x}\right): x \in E\right\}$. Then, by construction,

$$
E \subset \bigcup_{x \in E} B\left(x, r_{x}\right)
$$

so that \mathcal{F} is an open cover of E. Moreover, for each $x \in E$, by construction, we can find an open ball $B\left(x, r_{x}\right)$ such that $x \in B\left(x, r_{x}\right)$. Since $B\left(x, r_{x}\right)$ is an interval, any $x \in B\left(x, r_{x}\right)$ is a limit point so that for any $\epsilon>0$; we can thus find a neighborhood I of x such that $I \subset B\left(x, r_{x}\right)$ and $\mathfrak{m}_{1}^{*}(I)<\epsilon$. Thus, the collection of the open balls $B\left(x, r_{x}\right)$ for $x \in E$ (and such associated neighborhoods I) form a Vitali cover of E. The paranthetical remark is unnecessary as $B\left(x, r_{x}\right) \cup I=B\left(x, r_{x}\right)$. Now, for any finite number $n<j$, and disjoint intervals $I_{1}, \ldots, I_{n} \in \mathcal{F}$ with $\mathfrak{m}_{1}^{*}\left(I_{i}\right)=\frac{1}{2} \min (i, i-x)$, we observe that

$$
0 \leq \sum_{k=1}^{n} \mathfrak{m}_{1}^{*}\left(I_{k}\right)=\sum_{k=1}^{n} \min (k, k-x) \leq k n
$$

By construction, $j-k n \leq j$ so that for $\epsilon<j-k n$, the conclusion of Vitali's lemma fails to hold.

Before we embark on the main topic of this section, the following problem is a useful reminder of why Lebesgue Measure's is better suited than the Borel measure.

Problem 159 Show that any union of any collection of closed, bounded, nondegenerate intervals is measurable.

Solution 160 The finite and countable case is easy, since we can just appeal to the properties of the σ-algebra \mathfrak{M}_{1}. For the uncountable case, we use Vitali's lemma. Let \mathcal{F} be a family of closed, bounded nondegenerate intervals \mathfrak{I}_{α}, with α as the index for some uncountable indexing set J. Let $\mathcal{E}=$ $\left\{\mathcal{I}_{\alpha}: \exists \beta \in J, \mathcal{I}_{\alpha} \subset \mathcal{I}_{\beta}\right\}$. Essentially, we are picking the "small" intervals from \mathcal{F}. Note that it is still true that

$$
F=\bigcup_{\mathfrak{I} \in \mathcal{F}} \mathfrak{I}=\bigcup_{\mathfrak{I} \in \mathcal{E}} \mathfrak{I}
$$

Moreover, by construction, \mathcal{E} is a Vitali Cover of F so that by Vitali's lemma, we can find disjoint intervals $I_{1}, \ldots I_{k} \in \mathcal{E}$ such that

$$
\mathfrak{m}_{1}^{*}\left(F \backslash \bigcup_{k=1}^{n} I_{k}\right)<\epsilon .
$$

In fact, by Regularity of Measure, we can pass to the limit to extend to the countable case to get $\left\{I_{i}: i \in \mathbb{N}\right\} \subset \mathcal{E}$ such that

$$
\mathfrak{m}_{1}^{*}(F)=\sum_{k=1}^{\infty} \mathfrak{m}_{1}^{*}\left(I_{k}\right)
$$

Thus, F is measurable.
Theorem 161 If $f:(a, b) \longrightarrow \mathbb{R}$ is monotone, where the endpoints are allowed to be infinite, then f is continuous almost everywhere

Proof. WLOG, we can assume that f is increasing, a, b are finite and we can consider the interval $[a, b]$ instead of (a, b). We can write

$$
(a, b)=\bigcup_{k=1}^{\infty}\left[a+\frac{1}{k}, b-\frac{1}{k}\right]
$$

For a fixed $x_{0} \in(a, b)$, define

$$
f\left(x_{0}^{-}\right)=\sup \left\{f(x): x<x_{0}\right\} \text { and } f\left(x_{0}^{+}\right)=\inf \left\{f(x): x>x_{0}\right\}
$$

Then, $f\left(x_{0}^{+}\right)-f\left(x_{0}^{-}\right) \geq 0$ because f is increasing. f is continuous at x_{0} if and only if $f\left(x_{0}^{+}\right)=f\left(x_{0}^{-}\right)$. In other words, f is not continuous at x_{0} if and only if $f\left(x_{0}^{+}\right)<f\left(x_{0}^{-}\right)$. Let $J\left(x_{0}\right)=\left\{y: f\left(x_{0}^{-}\right)<y<f\left(x_{0}^{+}\right)\right\}$. This open set consists of points at which the function jumps, hence the choice of letter. It is obvious that $J\left(x_{0}\right) \subset[f(a), f(b)]$. Moreover, if $x_{0} \neq x_{0}^{\prime}$, then $J\left(x_{0}\right) \cap J\left(x_{0}^{\prime}\right)=\varnothing$ and so

$$
[f(a), f(b)] \subset \bigcup_{x_{0} \in[a, b]} J\left(x_{0}\right)
$$

is an open cover, for which we can find finitely many subcovers. Therefore, for each n, the cardinality of the set $\left\{x_{0}: \mathfrak{m}_{1}\left(J\left(x_{0}\right)\right)>\frac{1}{n}\right\}$ is finite, which implies that there are only finitely many discontinuities.

Let $f:[a, b] \longrightarrow \mathbb{R}$ and $x \in(a, b)$. We can define upper derivative

$$
\bar{D} f(x)=\lim _{h \rightarrow 0^{+}} \sup _{|t| \leq h} \frac{f(x+t)-f(x)}{t}
$$

and lower derivative as

$$
\underline{D} f(x)=\lim _{h \rightarrow 0^{+}} \inf _{|t| \leq h} \frac{f(x+t)-f(x)}{t} .
$$

Clearly, $\bar{D} f(x) \geq \underline{D} f(x)$. Also, $f^{\prime}(x)<\infty \Longleftrightarrow \bar{D} f(x)=\underline{D} f(x)<\infty$.
Problem 162 Find $\bar{D} f(0)$ and $\underline{D} f(0)$ where $f(x)$ is defined as

$$
f(x)=\left\{\begin{array}{cl}
x \sin (1 / x) & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

Solution 163 Note that

$$
\begin{aligned}
\bar{D} f(0) & =\lim _{h \rightarrow 0}\left[\sup _{0<|t| \leq h} \frac{f(t)-f(0)}{t}\right]=\lim _{h \rightarrow 0}\left[\sup _{0<|t| \leq h} \frac{t \sin \frac{1}{t}}{t}\right] \\
& =\lim _{h \rightarrow 0}\left[\sup _{0<|t| \leq h} \sin \frac{1}{t}\right]=1
\end{aligned}
$$

This is because $\sin \frac{1}{t}$ attains a supremum of 1 at, say, $t=\frac{2}{\pi} h$, which satisfies $|t| \leq h$.

$$
\begin{aligned}
\underline{D} f(0) & =\lim _{h \rightarrow 0}\left[\inf _{0<|t| \leq h} \frac{f(t)-f(0)}{t}\right]=\lim _{h \rightarrow 0}\left[\inf _{0<|t| \leq h} \frac{t \sin \frac{1}{t}}{t}\right] \\
& =\lim _{h \rightarrow 0}\left[\inf _{0<|t| \leq h} \sin \frac{1}{t}\right]=-1
\end{aligned}
$$

Again, this is because $\sin \frac{1}{t}$ attains an infimum of -1 at, say, $t=\frac{3}{2 \pi} h$, which satisfies $|t| \leq h$.

Recall that if a continuous function f is increasing, then $D f \geq 0$. This converse holds true for the upper derivative, as well.
Proof. Let f be a continuous function on $[a, b]$ with $\bar{D} f \geq 0$ on (a, b). Let $[c, d] \subset[a, b]$ with $a \neq c \nRightarrow d \neq b$ and $\epsilon>0$. Let

$$
E=\left\{x \in[c, d]: \frac{f(x)-f(c)}{x-c} \leq \epsilon\right\}
$$

We need to show that $\sup E=d$ for every ϵ so that we can let it go to zero and get the desired result. E is well defined since

$$
f(c)+\epsilon c \geq f(c)+\epsilon c
$$

so that $c \in E$. Since f is continuous and $[c, d]$ is compact, $f([c, d])$ is also compact and closed. Therefore E is closed and so, $\sup E \in E$. Let $\sup E=\alpha$. If $\alpha>d$, then $\alpha \notin E$, a contradiction. If $\alpha<d$, let

$$
g(h)=\sup _{0<t \leq h} \frac{f(\alpha+t)-f(\alpha)}{t}
$$

where $h \in(0, d-\alpha]$. Then,

$$
\lim _{h \rightarrow 0^{+}} g(h)=\bar{D} f(\alpha)
$$

By hypothesis, $\bar{D} f(\alpha) \geq 0$ so that

$$
\lim _{h \rightarrow 0^{+}} g(h) \geq 0
$$

By definition of this limit, $\forall \epsilon^{\prime}>0, \exists \delta$: we have that $g(h)>-\epsilon^{\prime}$ whenever $h=|h|<\delta$. For $\epsilon^{\prime}=\epsilon$, since $h \in(0, d-\alpha], \exists \alpha_{1}$ with $\alpha<\alpha_{1} \leq d$ such that

$$
\frac{f\left(\alpha_{1}\right)-f(\alpha)}{\alpha_{1}-\alpha}>-\epsilon
$$

That is,

$$
f\left(\alpha_{1}\right)+\epsilon \alpha_{1}>f(\alpha)+\epsilon \alpha \geq f(c)+\epsilon c
$$

so that $\alpha_{1} \in E$ and $\alpha_{1}>\sup E$, a contradiction.
Thus, $\alpha=d$. In summary, for any $[c, d] \subset[a, b]$ with $c \supsetneqq d$ and for any $\epsilon>0$, $f(d) \geq f(c)+\epsilon(d-c)$. Thus, we can let $\epsilon \rightarrow 0$ to get $f(d) \geq f(c)$.

Problem 164 Show that if the upper and lower derivatives of f are bounded on (a, b), then there exists a constant $C>0$ such that for every $x, y \in[a, b]$, $|f(x)-f(y)| \leq C|x-y|$

Solution 165 We are given the existence of two constants C_{1} and C_{2} such that

$$
|\bar{D} f(x)|=\left|\lim _{h \rightarrow 0}\left[\sup _{0<|t| \leq h} \frac{f(x+t)-f(x)}{t}\right]\right|=C_{1}<\infty
$$

and

$$
|\underline{D} f(x)|=\left|\lim _{h \rightarrow 0}\left[\inf _{0<|t| \leq h} \frac{f(x+t)-f(x)}{t}\right]\right|=C_{2}<\infty
$$

Let $C=2 \max \left\{C_{1}, C_{2}\right\}$. Then, $|\bar{D} f(x)| \leq C / 2$ and $|\underline{D} f(x)| \leq C / 2$ so that

$$
|\bar{D} f(x)+\underline{D} f(x)| \leq|\bar{D} f(x)|+|\underline{D} f(x)| \leq C
$$

Let $x, y \in(a, b)$ with $x<y$. Then, $\exists t>0$ such that $y-x=t$. Then,

$$
\frac{f(y)-f(x)}{t}=\frac{f(x+t)-f(x)}{t}
$$

so that

$$
\left|\inf _{0<|t| \leq h} \frac{f(x+t)-f(x)}{t}\right| \leq\left|\frac{f(x+t)-f(x)}{t}\right| \leq\left|\sup _{0<|t| \leq h} \frac{f(x+t)-f(x)}{t}\right|
$$

and so

$$
|\underline{D} f(x)| \leq\left|\frac{f(y)-f(x)}{y-x}\right| \leq|\bar{D} f(x)| \leq|\bar{D} f(x)|+|\underline{D} f(x)| \leq C
$$

That is,

$$
\left|\frac{f(y)-f(x)}{y-x}\right| \leq C
$$

Lemma 166 Let f be an increasing function on $[a, b]$. Then,

$$
\mathfrak{m}_{1}^{*}(\{x \in(a, b): \bar{D} f(x)>\alpha\}) \leq \frac{1}{\alpha}(f(b)-f(a))
$$

and

$$
\mathfrak{m}_{1}^{*}(\{x \in(a, b): \bar{D} f(x)=\infty\})=0
$$

Proof. If f were continuous on $[c, d] \subset[a, b]$ and differentiable on (c, d), then by the Mean Value Theorem, we have a point $x_{0} \in(c, d)$ such that $f(d)-f(c)=$ $f^{\prime}\left(x_{0}\right)(d-c)$. If $f^{\prime}(x) \geq \alpha$ on (c, d), then $f(d)-f(c) \geq \alpha(d-c)$ so the result holds if f is differentiable in (c, d).

In the general case, define $E_{\alpha}=\{x \in(a, b): \bar{D} f(x)>\alpha\}$ and let $\alpha^{\prime} \in(0, \alpha)$. Now, define the family $\mathcal{F}=\left\{I=[c, d] \subset(a, b): f(d)-f(c) \geq \alpha^{\prime}(d-c)\right\}$. Is
this non-empty? Yes. It actually covers E_{α} as in the Vitali's Lemma. Indeed, take $x \in E_{\alpha}$. Then, $\bar{D} f(x)>\alpha$ so that $\forall \epsilon>0, \exists \delta: \forall h<\delta, \exists t \in[-h, h]$, giving us

$$
\frac{f(x+t)-f(x)}{t}>\alpha-\epsilon
$$

Take $\epsilon=\alpha-\alpha^{\prime}$. Then, $\forall h<\delta, \exists t \in[-h, h]: f(x+t)-f(x)>t \alpha^{\prime}$, giving us $I=[x, x+t]$ or $I=[x+t, x]$. We then have a disjoint collection $\left\{I_{k}=\left[c_{k}, d_{k}\right]: 1 \leq k \leq n\right\} \subset \mathcal{F}$ with

$$
\mathfrak{m}_{1}^{*}\left(E_{\alpha} \backslash \bigcup_{j=1}^{n} I_{j}\right)<\epsilon
$$

Note that

$$
\begin{aligned}
\mathfrak{m}_{1}^{*}\left(E_{\alpha}\right) & \leq \mathfrak{m}_{1}^{*}\left(E_{\alpha} \cap \bigcup_{j=1}^{n} I_{j}\right)+\mathfrak{m}_{1}^{*}\left(E_{\alpha} \backslash \bigcup_{j=1}^{n} I_{j}\right) \\
& \leq \mathfrak{m}_{1}^{*}\left(\bigcup_{j=1}^{n} I_{j}\right)+\epsilon \\
& \leq \sum_{j=1}^{n}\left(d_{j}-c_{j}\right)+\epsilon \\
& \leq \frac{1}{\alpha^{\prime}} \sum_{j=1}^{n}\left(f\left(d_{j}\right)-f\left(c_{j}\right)\right)+\epsilon \\
& \leq \frac{1}{\alpha^{\prime}}(f(b)-f(a))+\epsilon
\end{aligned}
$$

Since this is true for any α^{\prime}, we can let $\alpha^{\prime} \rightarrow \alpha(\epsilon \rightarrow 0)$ to get what we need. Using this, we complete the proof as follows:
$\mathfrak{m}_{1}^{*}(\{x \in(a, b): \bar{D} f(x)=\infty\}) \leq \mathfrak{m}_{1}^{*}(\{x \in(a, b): \bar{D} f(x)>\alpha\}) \leq \frac{1}{\alpha}(f(b)-f(a))$
and let $\alpha \rightarrow \infty$.
And now, for a main theorem
Theorem 167 (Lebesgue's Theorem) Let $f:(a, b) \longrightarrow \mathbb{R}$ be an increasing function. Then, $f^{\prime}(x)$ exists for almost every $x \in(a, b)$

Proof. The set $\left\{x: f^{\prime}(x)\right.$ does not exist $\}=\{x: \bar{D} f(x)=\infty\} \cup\{x: \bar{D} f(x) \geqslant \underline{D} f(x)\}$
The measure of the first set is determined by Lemma 166. For the second one, note that

$$
\{x: \bar{D} f(x)>\underline{D} f(x)\}=\bigcup_{\alpha, \beta \in \mathbb{Q}}\{x: \bar{D} f(x)>\alpha>\beta>\underline{D} f(x)\}=\bigcup_{\alpha, \beta \in \mathbb{Q}} E_{\alpha, \beta} \text { (say) }
$$

Our goal is to show that $\mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta}\right)=0$. Take an open G such that, for, $E_{\alpha, \beta} \subset$ G, we have $\mathfrak{m}_{1}^{*}(G)<\mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta}\right)+\epsilon$. This does not follow from the regularity of the measure! In fact, the outer measure is not even additive.

Note that

$$
\mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta}\right)=\inf \sum \mathfrak{m}_{1}\left(\left(a_{j}, b_{j}\right)\right)
$$

Now, let $\mathcal{F}=\{I=[c, d] \subset G: f(d)-f(c)>\beta(d-c)\}$. \mathcal{F} covers $E_{\alpha, \beta}$, as in Vitali's Lemma. To show this, let $x \in E$ and $\epsilon>0$. Then, $\bar{D} f(x)>\underline{D} f(x)$. That is,

$$
\lim _{h \rightarrow 0^{+}} \sup _{|t| \leq h} \frac{f(x+t)-f(x)}{t}>\lim _{h \rightarrow 0^{+}} \inf _{|t| \leq h} \frac{f(x+t)-f(x)}{t}
$$

By definition of limit and choice of ϵ, we can find $\delta>0: \forall h<\delta, \exists t \in[-h, h]$ such that

$$
\frac{f(x+t)-f(x)}{t}>\underline{D} f(x)-\epsilon
$$

Pick ϵ such that $\underline{D} f(x)-\epsilon$ is a rational number p. Then,

$$
f(x+t)-f(x)>t p
$$

We, therefore, have found our $[c, d]=[x, x+t]$ or $I=[x+t, x]$. Moreover, by choice of $\epsilon, \mathfrak{m}_{1}([c, d])=t<\epsilon$. Thus, we can take the disjoint collection $\left\{I_{k}: 1 \leq k \leq n\right\} \subset \mathcal{F}$ so that

$$
\mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta} \backslash \bigcup_{j=1}^{n} I_{j}\right)<\epsilon
$$

where $I_{k}=\left[c_{k}, d_{k}\right]$, giving us

$$
\begin{aligned}
\mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta}\right) & \leq \sum_{j=1}^{n} \mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta} \cap I_{j}\right)+\epsilon \\
& \leq \sum_{j=1}^{n} \mathfrak{m}_{1}^{*}\left(\left\{x \in\left(c_{j}, d_{j}\right): \bar{D} f(x)>\alpha\right\}\right)+\epsilon \\
& \leq \frac{1}{\alpha} \sum_{j=1}^{n}\left(f\left(d_{j}\right)-f\left(c_{j}\right)\right)+\epsilon(\text { by Lemma 166 }) \\
& \Longrightarrow \sum_{j=1}^{n}\left(f\left(d_{j}\right)-f\left(c_{j}\right)\right) \geq \alpha \mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta}\right)-\alpha \epsilon
\end{aligned}
$$

On the other hand,
$\sum_{j=1}^{n}\left(f\left(d_{j}\right)-f\left(c_{j}\right)\right)<\beta \sum_{j=1}^{n}\left(d_{j}-c_{j}\right)=\beta \sum_{j=1}^{n} \mathfrak{m}_{1}\left(I_{j}\right)<\beta \mathfrak{m}_{1}(G)<\beta \mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta}\right)+\beta \epsilon$
giving us $\alpha \mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta}\right)-\alpha \epsilon \leq \beta \mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta}\right)+\beta \epsilon$. That is,

$$
\mathfrak{m}_{1}^{*}\left(E_{\alpha, \beta}\right) \leq \epsilon \frac{\alpha+\beta}{\alpha-\beta}
$$

Letting $\epsilon \rightarrow 0$, we get the desired result.
Corollary 168 Let $f:[0, b] \longrightarrow \mathbb{R}$ be an increasing function. Then,

$$
\int_{[a, b]} f^{\prime} d \mathfrak{m}_{1} \leq f(b)-f(a)
$$

Proof. Set $f(x)=f(b)$ for $x \geq b$. Then, f^{\prime} exists on $E \subset[a, b+1]$ and $\mathfrak{m}_{1}([a, b+1] \backslash E)=0$ so that $f^{\prime}(x)=\bar{D} f(x) \geq 0$ for $x \in E$. For this proof and onwards, we introduce the following notation: let

$$
D_{h} f(x)=\frac{f(x+h)-f(x)}{h}
$$

For a fixed $h \leq 1, D_{h} f$ is measurable on $[a, b]$. If $x \in E$, we have $D_{1 / n} f(x) \rightarrow$ $f^{\prime}(x)$ (we can only take the limit when we have a countable set, as in a sequence). Thus, f^{\prime} is measurable on E. Since \mathfrak{m}_{1} is complete, by Problem 46, f^{\prime} is measurable on $[a, b]$. Therefore,

$$
\int_{[a, b]} f^{\prime} d \mathfrak{m}_{1}
$$

is legal. Now, by Fatou's Lemma,

$$
\underline{\lim }_{n \rightarrow \infty} \int_{[a, b]} D_{1 / n} f d \mathfrak{m}_{1} \geq \int_{[a, b]} \underline{\lim _{n \rightarrow \infty}} D_{1 / n} f d \mathfrak{m}_{1}=\int_{[a, b]} f^{\prime} d \mathfrak{m}_{1}
$$

For $h=1 / n$, we therefore have

$$
\int_{[a, b]} D_{h} f d \mathfrak{m}_{1}=\int_{[a, b]} \frac{f(x+h)-f(x)}{h} d \mathfrak{m}_{1}
$$

We can now use linearity of the measure, which applies only when f is summable, to give

$$
\begin{equation*}
\int_{[a, b]} \frac{f(x+h)-f(x)}{h} d \mathfrak{m}_{1}=1 / h\left(\int_{[a, b]} f(x+h) d \mathfrak{m}_{1}-\int_{[a, b]} f(x) d \mathfrak{m}_{1}\right) . \tag{8}
\end{equation*}
$$

First note that

$$
\int_{[a, b]} g(x+h) d \mathfrak{m}_{1}(x)=\int_{[a+h, b+h]} g(x) d \mathfrak{m}_{1}(x)
$$

for any measurable $g: X \longrightarrow \mathbb{R}$ and $[a, b] \subset X$. To see this, let $t=x+h$. Then, $x=a \Longrightarrow t=a+h$ and, similarly, $x=b \Longrightarrow t=b+h$. Replacing the dummy variable t with x gives us the required result and, therefore, modifies our integral in Eq (8) to

$$
\begin{aligned}
& 1 / h\left(\int_{[a+h, b+h]} f(x) d \mathfrak{m}_{1}-\int_{[a, b]} f(x) d \mathfrak{m}_{1}\right) \\
= & 1 / h\left(\int_{[a+h, b]} f(x) d \mathfrak{m}_{1}+\int_{[b, b+h]} f(x) d \mathfrak{m}_{1}-\int_{[a, b]} f(x) d \mathfrak{m}_{1}\right) \\
= & 1 / h\left(\int_{[a+h, b]} f(x) d \mathfrak{m}_{1}+\int_{[b, b+h]} f(x) d \mathfrak{m}_{1}+\int_{[a, a+h]} f(x) d \mathfrak{m}_{1}-\int_{[a, a+h]} f(x) d \mathfrak{m}_{1}-\int_{[a+h, b]} f(x) d \mathfrak{m}_{1}\right) \\
= & \left.1 / h\left(\int_{[a, a+h]} f(x) d \mathfrak{m}_{1}+\int_{[a, b]} f(x) d \mathfrak{m}_{1}\right)-\int_{[a, b]} f(x) d \mathfrak{m}_{1}+\int_{[b, b+h]} f(x) d \mathfrak{m}_{1}-\int_{[a, a+h]} f(x) d \mathfrak{m}_{1}\right) \\
= & 1 / h\left(\int_{[b, b+h]} f(x) d \mathfrak{m}_{1}-\int_{[a+h]} f(x) d \mathfrak{m}_{1}\right)
\end{aligned}
$$

because $[a, b+h]=[a, a+h] \cup[a+h, b] \cup[b, b+h]$. Now, we can use $f(x)=$ $f(b)$ to give

$$
1 / h\left(h f(b)-\int_{[a, a+h]} f d \mathfrak{m}_{1}\right) \leq \frac{1}{h}(h f(b)-h f(a))=f(b)-f(a)
$$

Thus,

$$
\int_{[a, b]} D_{1 / n} f d \mathfrak{m}_{1} \leq f(b)-f(a)
$$

so that

$$
\underline{l i m}_{n \rightarrow \infty} \int_{[a, b]} D_{1 / n} f d \mathfrak{m}_{1} \leq f(b)-f(a)
$$

This inequality is very sharp!
Example 169 Consider

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \left(\frac{1}{x^{2}}\right) & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

This function is continuous and finite but not monotone. Moreover,

$$
\int_{[0,1]} f^{\prime} d \mathfrak{m}_{1}=\infty
$$

Thus, f^{\prime} is not summable so that monotonicity is crucial, even when the function above is differentiable at $x \neq 0$.

4.2 Functions of Bounded Variation

Let $f:[a, b] \longrightarrow \mathbb{R}$ be a function and $P=\left\{x_{j}: 0 \leq j \leq n\right\}$ be a partition of the interval $[a, b]$. Define

$$
V(f, P)=\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|
$$

Without the absolute value, this is just a telescopic sum. With it, the bounded variation gives a sense of how oscillating the function is. Some partitions do that and some don't. To find out how bad these oscillations can get, we take the supremum over partitions. This is called the total variation $T V(f)$:

$$
T V(f)=\sup _{P} V(f, P)
$$

which may be denoted by $T V\left(f_{[a, b]}\right)$ since the total variation is defined on a particular domain for a function f. If $T V(f)<\infty$, then f is of bounded variation.
Problem $170 T V(f)=T V(-f)$
Solution 171 Let P be a partition of the largest closed subset of domain of f. Then,
$V(-f, P)=\sum_{j=1}^{n}\left|(-f)\left(x_{j}\right)-(-f)\left(x_{j-1}\right)\right|=\sum_{j=1}^{n}\left|-f\left(x_{j}\right)+f\left(x_{j-1}\right)\right|=\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|=V(-f, P)$
Since supremum is taken over all partitions, the result follows.
Example 172 Let f be a monotonic increasing function. Then, TV $\left(f_{[a, b]}\right)=$ $f(b)-f(a)$. This is because $f\left(x_{j}\right)-f\left(x_{j-1}\right)>0$ for $x_{j-1}<x_{j}$ so that $\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|=f\left(x_{j}\right)-f\left(x_{j-1}\right)$ and the sum becomes telescoping.

Example 173 Another good family of functions called Lipschitz are defined by a constant C such that, for any $x, y \in[a, b]:|f(x)-f(y)| \leq C|x-y|$. The absolute value function is one example. Lipschitz functions are all continuous and differentiable almost everywhere. Note that

$$
\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| \leq C \sum_{j=1}^{n}\left|x_{j}-x_{j-1}\right|=C(b-a)
$$

hence Lipshcitz functions are of bounded variation over a bounded domain.

Example 174 We have seen in Problem 164 that if functions with bounded upper and lower derivatives are Lipschitz. Thus, functions with bounded upper and lower derivatives are also of bounded variation.

Example 175 Consider the function

$$
f(x)=\left\{\begin{array}{cc}
x \cos \left(\frac{\pi}{2 x}\right) & 0<x \leq 1 \\
0 & x=0
\end{array}\right.
$$

with partition $P_{N}=\left\{0, \frac{1}{2 N}, \frac{1}{3 N}, \ldots, \frac{1}{3}, \frac{1}{2}, 1\right\}$. Computing the variation tells us that each consecutive point applied on f give us zero and 1 on each subsequent point for the cosine part. Thus, $V\left(f, P_{N}\right)=\frac{1}{N}+\ldots+1$. Therefore, the function f is not of bounded variation.
Proposition $176 T V\left(f_{[a, b]}\right)=T V\left(f_{[a, c]}\right)+T V\left(f_{[c, b]}\right)$ if $a \leq c \leq b$
Proof. Let $P=\left\{x_{j}: 0 \leq j \leq n\right\}$ be a partition of the interval $[a, b]$. Then, if $\exists k$ such that $x_{k}=c$, then by triangular inequality,

$$
\begin{aligned}
V\left(f_{[a, b]}, P\right) & =\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| \leq \sum_{j=1}^{k}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|+\sum_{j=k}^{n}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| \\
& =V\left(f_{[a, c]}, P^{\prime}\right)+V\left(f_{[c, b]}, P^{\prime \prime}\right)
\end{aligned}
$$

for some partition P^{\prime} of $[a, c]$ and $P^{\prime \prime}$ of $[c, b]$. Since this holds for any P, we have $T V\left(f_{[a, b]}\right) \leq T V\left(f_{[a, c]}\right)+T V\left(f_{[c, b]}\right)$. Conversely, note that any paritition P of [$a, c]$ and P^{\prime} of $[c, b]$ gives rise to a partition $P \cup P^{\prime}$ of $[a, b]$. Thus, $V\left(f_{[a, c]}, P\right)+$ $V\left(f_{[c, b]}, P\right) \leq V\left(f_{[a, b]}, P \cup P^{\prime}\right)$. It follows that $T V\left(f_{[a, b]}\right) \geq T V\left(f_{[a, c]}\right)+$ $T V\left(f_{[c, b]}\right)$.
Theorem 177 (Jordan Decomposition) $T V(f)<\infty \Longleftrightarrow f(x)=f_{1}(x)-$ $f_{2}(x)$ where f_{1}, f_{2} are both increasing
Proof. (\Longrightarrow) Let $\varphi(x)=T V\left(f_{[a, x]}\right)$. If $x>y$, then, $T V\left(f_{[a, x]}\right)-T V\left(f_{[a, y]}\right)=$ $T V\left(f_{[y, x]}\right) \geq 0$. That is, $\varphi(x) \geq \varphi(y)$. That is, φ is an increasing function. Now let $\psi(x)=f(x)+\varphi(x) . \quad \psi(x)$ is also monotone, regardless of the behaviour of f : if $x>y$, then consider the partition $P=\{x, y\}$. Then, $f(x)-f(y) \leq|f(x)-f(y)| \leq T V\left(f_{[y, x]}\right)=T V\left(f_{[a, x]}\right)-T V\left(f_{[a, y]}\right)$. Similarly for $f(y)-f(x) \leq|f(x)-f(y)| \leq T V\left(f_{[y, x]}\right)=T V\left(f_{[a, x]}\right)-T V\left(f_{[a, y]}\right)$. In summary, $f(y)+T V\left(f_{[a, y]}\right) \leq f(x)+T V\left(f_{[a, x]}\right)$ so that $\psi(y) \leq \psi(x)$. That is, we have found ourselves an expression $f(x)=\psi(x)-\varphi(x)$, where ψ and φ are both increasing.
(\Longleftarrow) For any partition $P=\left\{x_{j}: 0 \leq j \leq n\right\}$ of the interval $[a, b]$,

$$
\begin{aligned}
\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| & =\sum_{j=1}^{n}\left|f_{1}\left(x_{j}\right)-f_{1}\left(x_{j-1}\right)+f_{2}\left(x_{j-1}\right)-f_{2}\left(x_{j}\right)\right| \\
& \leq \sum_{j=1}^{n}\left|f_{1}\left(x_{j}\right)-f_{1}\left(x_{j-1}\right)\right|+\sum_{j=1}^{n}\left|f_{2}\left(x_{j}\right)-f_{2}\left(x_{j-1}\right)\right| \\
& =f_{1}(b)-f_{1}(a)+f_{2}(b)-f_{2}(a)<\infty
\end{aligned}
$$

Corollary $178 T V(f)<\infty \Longrightarrow f^{\prime}$ exists almost everywhere
Proof. By Jordan's Decomposition, $f=f_{1}-f_{2}$ where f_{1} and f_{2} are both monotone. By Lebesgue's Theorem, both are differentiable almost everywhere, as is their difference.

Corollary $179 T V(f)<\infty \Longrightarrow f^{\prime}$ is summable
Proof. Follows directly by Jordan Decomposition and Corollary 168.
Problem 180 Let $T V(f)<\infty$ on $[a, b]$ and define $\varphi(x)=T V\left(f_{[a, x]}\right)$. Show that $\left|f^{\prime}\right| \leq \varphi^{\prime}$ almost everywhere on $[a, b]$. Deduce that

$$
\int_{[a, b]}\left|f^{\prime}\right| d \mathfrak{m}_{1} \leq T V(f)
$$

Solution 181 Since f is bounded variation, then f^{\prime} exists almost everywhere. Moreover, since φ is increasing, φ^{\prime} exists almost everywhere on (a, b). Let y be such a point where $f^{\prime}(y)$ and $\varphi^{\prime}(y)$ are defined. Let $x \in[a, b]$ with $x>y$. Consider the partition $P=\{x, y\}$. Then, $f(x)-f(y) \leq|f(x)-f(y)| \leq$ $T V\left(f_{[y, x]}\right)=T V\left(f_{[a, x]}\right)-T V\left(f_{[a, y]}\right)$. Since $x>y$, there exists $h>0$ such that $x=h+y$. Then,

$$
\frac{|f(h+y)-f(y)|}{h} \leq \frac{T V\left(f_{[a, y+h]}\right)-T V\left(f_{[a, y]}\right)}{h}=\frac{\varphi(y+h)-\varphi(y)}{h}
$$

Since this holds for any such x, we can let $h \rightarrow 0$ to get $\left|f^{\prime}(y)\right| \leq \varphi^{\prime}(y)$. Since y was arbitrary, therefore $\left|f^{\prime}\right| \leq \varphi^{\prime}$ almost everywhere.

Now, since φ is continuous and increasing on $[a, b]$, as a real-valued function. Then by Corollary 168,

$$
\int_{[a, b]} \varphi^{\prime} d \mathfrak{m}_{1} \leq \varphi(b)-\varphi(a)
$$

From $\left|f^{\prime}\right| \leq \varphi^{\prime}$, we have

$$
\begin{aligned}
\int_{[a, b]}\left|f^{\prime}\right| d \mathfrak{m}_{1} & \leq \int_{[a, b]} \varphi^{\prime} d \mathfrak{m}_{1} \leq \varphi(b)-\varphi(a) \\
& =T V\left(f_{[a, b]}\right)-T V\left(f_{[a, a]}\right)=T V\left(f_{[a, b]}\right)=T V(f)
\end{aligned}
$$

Definition 182 Let $f:[a, b] \longrightarrow \mathbb{R}$ be a function. Then, f is said to be absolutely continuous if $\forall \epsilon>0, \exists \delta>0$ such that, if $\left\{\left(a_{i}, b_{i}\right): 1 \leq i \leq n\right\}$ is a family of disjoint intervals, then

$$
\sum_{j=1}^{n} b_{j}-a_{j}<\delta \Longrightarrow \sum_{j=1}^{n}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\epsilon
$$

These intervals may not be a partition of $[a, b]$. Note that continuity on $[a, b]$ may imply uniform continuity but uniform continuity does not imply absolute continuity. Also note that the sum of two absolutely continuous functions is continuous. Skipping this, we move to

Proposition 183 Let f, g be absolutely continuous on $[a, b]$. Show that the function $f . g$ defined by $(f . g)(x)=f(x) g(x)$ is absolutely continuous.
Proof. First, we prove that $f . g$ is continuous. Let $x_{0} \in[a, b]$. Since f, g are both continuous, for any $\epsilon>0$, we have δ_{1}, δ_{2} and δ_{3} such that

$$
\begin{aligned}
\left|x-x_{0}\right|<\delta_{1} & \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\frac{\epsilon}{2\left(\left|g\left(x_{0}\right)\right|+\epsilon\right)} \\
\left|x-x_{0}\right|<\delta_{2} & \Longrightarrow\left|g(x)-g\left(x_{0}\right)\right|<\frac{\epsilon}{2\left|f\left(x_{0}\right)\right|}
\end{aligned}
$$

and

$$
\left|x-x_{0}\right|<\delta_{3} \Longrightarrow\left|g(x)-g\left(x_{0}\right)\right|<\left|g\left(x_{0}\right)\right|+\epsilon
$$

Take $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$. Then,

$$
\begin{aligned}
& \left|(f . g)(x)-(f . g)\left(x_{0}\right)\right| \\
= & \left|f(x) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)\right|=\left|f(x) g(x)-f\left(x_{0}\right) g(x)+f\left(x_{0}\right) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)\right| \\
\leq & \left|f(x) g(x)-f\left(x_{0}\right) g(x)\right|+\left|f\left(x_{0}\right) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)\right| \\
= & \left|f(x)-f\left(x_{0}\right)\right||g(x)|+\left|f\left(x_{0}\right)\right|\left|g(x)-g\left(x_{0}\right)\right|<\frac{\epsilon}{2\left(\left|g\left(x_{0}\right)\right|+\epsilon\right)}|g(x)|+\left|f\left(x_{0}\right)\right| \frac{\epsilon}{2\left|f\left(x_{0}\right)\right|} \\
< & \frac{\epsilon}{2\left(\left|g\left(x_{0}\right)\right|+\epsilon\right)}\left(\left|g\left(x_{0}\right)\right|+\epsilon\right)+\left|f\left(x_{0}\right)\right| \frac{\epsilon}{2\left(\left|f\left(x_{0}\right)\right|\right)}=\epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

Since the function $f . g$ is continuous on a compact domain $[a, b]$, it achives its maximum and minimum by Extreme Value Theorem. Thus, $f . g$ is bounded. Let $|f . g| \leq M$

Now, given $\epsilon>0$, we know that $\exists \delta_{1}, \delta_{2}$ (distinct from above proof!) such that $\left\{\left(a_{i}, b_{i}\right): 1 \leq i \leq n\right\}$ is a family of disjoint intervals with

$$
\sum_{j=1}^{n} b_{j}-a_{j}<\delta_{1} \Longrightarrow \sum_{j=1}^{n}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\epsilon / 2 n M
$$

and

$$
\sum_{j=1}^{n} b_{j}-a_{j}<\delta_{2} \Longrightarrow \sum_{j=1}^{n}\left|g\left(b_{j}\right)-g\left(a_{j}\right)\right|<\epsilon / 2 n M
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then, for each j,

$$
\begin{aligned}
& \left|f\left(b_{j}\right) g\left(b_{j}\right)-f\left(a_{j}\right) g\left(a_{j}\right)\right| \\
= & \left|f\left(b_{j}\right) g\left(b_{j}\right)-f\left(b_{j}\right) g\left(a_{j}\right)+f\left(b_{j}\right) g\left(a_{j}\right)-f\left(a_{j}\right) g\left(a_{j}\right)\right| \\
\leq & \left|f\left(b_{j}\right) g\left(b_{j}\right)-f\left(b_{j}\right) g\left(a_{j}\right)\right|+\left|f\left(b_{j}\right) g\left(a_{j}\right)-f\left(a_{j}\right) g\left(a_{j}\right)\right| \\
= & \left|f\left(b_{j}\right)\right|\left|g\left(b_{j}\right)-g\left(a_{j}\right)\right|+\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|\left|g\left(a_{j}\right)\right| \\
< & \frac{\left|f\left(b_{j}\right)\right| \epsilon}{2 n M}+\frac{\left|g\left(a_{j}\right)\right| \epsilon}{2 n M} \leq \frac{M \epsilon}{2 n M}+\frac{M \epsilon}{2 n M}=\epsilon / n
\end{aligned}
$$

so that

$$
\sum_{i=1}^{n}\left|f\left(b_{j}\right) g\left(b_{j}\right)-f\left(a_{j}\right) g\left(a_{j}\right)\right|<\frac{n \epsilon}{n}=\epsilon
$$

Thus, $f . g$ is absolutely continuous.
Example 184 A good example is a Lipschitz function. Let $|f(x)-f(y)| \leq$ $C|x-y|$. Then,

$$
\sum_{j=1}^{n}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right| \leq C \sum_{j=1}^{n}\left|b_{j}-a_{j}\right|
$$

so that we can take $\delta=\epsilon / C$.
Example 185 An absolutely continuous function is Lipschitz if and only if $\left|f^{\prime}\right|$ is bounded. To show this, let $\left|f^{\prime}\right| \leq c$ and $x, y \in \mathcal{D}(f)$, domain of f. Consider the interval $[x, y]$. Then, f is absolutely continuous on $[x, y]$ so that

$$
\left|\int_{x}^{y} f^{\prime} d \mathfrak{m}_{1}\right|=|f(y)-f(x)| \leq \int_{x}^{y}\left|f^{\prime}\right| d \mathfrak{m}_{1} \leq c \mathfrak{m}_{1}[x, y]=c|y-x|
$$

Converse follows from Example 174.
Theorem 186 Let f be absolutely continuous. Then, f is of bounded variation. Moreover, $f=f_{1}-f_{2}$ where f_{1}, f_{2} are both increasing and absolutely continuous.

Proof. Take δ for $\epsilon=1$. Split $[a, b]$ into N intervals of length $<\delta . N \approx \frac{b-a}{\delta}$. These intervals are $\left[a_{k}, b_{k}\right]$. Then,

$$
T V(f)=\sum_{k=1}^{N} T V\left(f_{\left[a_{k}, b_{k}\right]}\right)
$$

If $P=\left\{x_{k}: 0 \leq k \leq n\right\}$ is a partition of $\left[a_{j}, b_{j}\right]$, then $\left\{\left(x_{k}, x_{k+1}\right): 0 \leq k \leq n-1\right\}$ is a disjoint collection and
$\sum_{k=1}^{n}\left|x_{k-1}-x_{k}\right|=\left|b_{j}-a_{j}\right|<\delta \Longrightarrow V(f, P)<1 \Longrightarrow T V\left(f_{\left[a_{j}, b_{j}\right]}\right) \leq 1 \Longrightarrow T V(f) \leq N$
Now, denote $f_{2}(x)=\varphi(x)=T V\left(f_{[a, x]}\right)$ and $f_{1}(x)=f(x)+T V\left(f_{[a, x]}\right)=$ $\psi(x)$. It suffices to show that $\varphi(x)$ is absolutely continuous. Take $\delta=\epsilon / 2$. Assume that

$$
\sum_{k=1}^{n} b_{k}-a_{k}<\delta
$$

where $\left\{\left(a_{k}, b_{k}\right): 1 \leq k \leq n\right\}$ is a disjoint collection of intervals. Now, consider the partition P_{k} of $\left(a_{k}, b_{k}\right)$. Then,

$$
\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|=\sum_{k=1}^{n} V\left(f, P_{k}\right)<\epsilon / 2
$$

so that

$$
\sum_{k=1}^{n} T V\left(f_{\left[a_{k}, b_{k}\right]}\right) \leq \epsilon / 2<\epsilon
$$

Now, by the linearity $T V\left(f_{\left[a_{k}, b_{k}\right]}\right)=T V\left(f_{\left[a, b_{k}\right]}\right)-\left(f_{\left[a, a_{k}\right]}\right)=\varphi\left(b_{k}\right)-\varphi\left(a_{k}\right)$ so that

$$
\sum_{k=1}^{n}\left|\varphi\left(b_{k}\right)-\varphi\left(a_{k}\right)\right|<\epsilon
$$

Thus, in addition to being absolutely continuous, we can always assume that our function is increasing. However, note that there exists a function of bounded variation which is not absolutely increasing. For example, any monotone function.

Problem 187 Let f be continuous on $[0,1]$ and absolutely continuous on $[\epsilon, 1]$ for each $0<\epsilon<1$. Show that f may not be absolutely continuous on $[0,1]$, but it is if f in increasing.

Solution 188 For the first part, we want to have a function continuous on $[0,1]$, absolutely continuous on $[\epsilon, 1]$ but not absolutely continuous on $[0,1]$. Consider the function

$$
f(x)=\left\{\begin{array}{cc}
x \sin \frac{1}{x} & x \in(0,1] \\
0 & x=0
\end{array}\right.
$$

f is continuous on $(0,1]$ clearly, as it is the product of two continuous functions on $(0,1] . f$ is also continuous at 0 : note that

$$
|f(x)-f(0)|=\left|x \sin \frac{1}{x}\right| \leq|x|
$$

since $\left|\sin \frac{1}{x}\right| \leq 1$. Then,

$$
\lim _{x \rightarrow 0}|f(x)-f(0)| \leq 0 \Longrightarrow \lim _{x \rightarrow 0} f(x)=f(0)
$$

Moreover, f is differentiable on $[\epsilon, 1]$ for any $\epsilon>0$ and, by the product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\sin \left(\frac{1}{x}\right)-\frac{1}{x} \cos \left(\frac{1}{x}\right) \Longrightarrow\left|f^{\prime}(x)\right|=\left|\sin \left(\frac{1}{x}\right)-\frac{1}{x} \cos \left(\frac{1}{x}\right)\right| \\
& \leq\left|\sin \left(\frac{1}{x}\right)\right|+\left|\frac{1}{x} \cos \left(\frac{1}{x}\right)\right| \leq 1+\frac{1}{x} \leq 1+\frac{1}{\epsilon}
\end{aligned}
$$

By Example 185, f is Lipschitz on $[\epsilon, 1]$. Therefore, by Example 184, f is absolutely continuous on $[\epsilon, 1]$. It remains to show that f is not absolutely continuous on $[0,1]$. We can accomplish this by showing that f is not of bounded variation. Let $\epsilon>0$. Then, $\exists n$ such that $\epsilon>1 / n$. Consider the partition P
defined by $x_{n+1}=0 \leq \frac{1}{n \pi+\pi / 2} \leq \frac{1}{(n-1) \pi+\pi / 2} \leq \ldots \leq \frac{1}{\pi+\pi / 2} \leq 1=x_{0}$. Let $x_{j}=1 /(j \pi+\pi / 2)$ for $j \in\{1, \ldots, n\}=J$. Then,

$$
\sin x_{j}=\left\{\begin{array}{cc}
1 & j \in J \text { is even } \\
-1 & j \in J \text { is odd } \\
\sin 1 & j=0 \\
0 & j=n+1
\end{array}\right.
$$

so that

$$
f\left(x_{j}\right)=\left\{\begin{array}{cc}
x_{j} & j \text { is even and } j \neq 0 \\
-x_{j} & j \text { is odd and } j \neq n+1 \\
\sin 1 & j=0 \\
0 & j=n+1
\end{array}\right.
$$

Then,

$$
\begin{aligned}
\sum_{j=1}^{n+1}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| & =\left|x_{1}-0\right|+\left|x_{2}-x_{3}\right|+\ldots+\left|\sin 1-x_{n}\right| \\
& =x_{1}+x_{2}+x_{3}+\ldots+x_{n}+\sin 1 \\
& =\sin 1+\sum_{j=1}^{n} 1 /(j \pi+\pi / 2)
\end{aligned}
$$

The sum on the right is the (displaced) harmonic series, which diverges as $n \rightarrow$ ∞. Hence the function is not of bounded variation.

Problem 189 Let f be continuous and increasing on $[0,1]$ and absolutely continuous on $[\epsilon, 1]$ for each $0<\epsilon<1$. Show that f is absolutely continuous.

Solution 190 Since f is increasing, given $\epsilon>0$, we must have $f(\epsilon)-f(0)>0$. Since f is continuous on $[0,1], \forall \xi>0 \exists \delta^{\prime}$ such that $|\epsilon-0|=\epsilon<\delta^{\prime} \Longrightarrow$ $|f(\epsilon)-f(0)|=f(\epsilon)-f(0)<\xi / 2$. Let $n \in \mathbb{N}$ and $\mathcal{I}=\{1,2, \ldots, n\}$. Since $\xi / 2>0$ and f is absolutely continuous on $[\epsilon, 1], \exists \delta^{\prime \prime}>0$ such that, for a family of disjoint intervals $\left\{\left(a_{i}, b_{i}\right): i \in \mathcal{I}\right\}$, each a subset of $[\epsilon, 1]$,

$$
\sum_{j=1}^{n}\left|b_{j}-a_{j}\right|<\delta^{\prime \prime} \Longrightarrow \sum_{j=1}^{n}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\xi / 2
$$

Consider a finite family $\left\{\left(a_{i}, b_{i}\right): 1 \leq i \leq m\right\}$ of disjoint subintervals of $[0,1]$. Let $I=\left\{i:\left(a_{i}, b_{i}\right) \subset[\epsilon, 1]\right\}$ and $J=\left\{i:\left(a_{i}, b_{i}\right) \subset[0, \epsilon]\right\}$. Note that if $\epsilon \in$ $\left(a_{i}, b_{i}\right)$, then $a_{i}<\epsilon<b_{i}$ so that $f\left(a_{i}\right)<f(\epsilon)<f\left(b_{i}\right)$. Moreover, $\left|f\left(b_{i}\right)-f(\epsilon)\right|=$ $f\left(b_{i}\right)-f(\epsilon)$ and $\left|f(\epsilon)-f\left(a_{i}\right)\right|=f(\epsilon)-f\left(a_{i}\right)$ so that $\left|f\left(b_{i}\right)-f(\epsilon)\right|+\left|f(\epsilon)-f\left(a_{i}\right)\right|=$ $\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|$. Thus, the presence of ϵ in an interval makes no difference in the sum we are looking for, so we can assume that $I \cup J=\{1,2, \ldots, m\}$. Now, because f is increasing, we must have

$$
\sum_{j \in J}\left|b_{j}-a_{j}\right|<\frac{\delta^{\prime}}{2} \Longrightarrow \sum_{j \in J}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right| \leq f(\epsilon)-f(0)<\xi / 2
$$

Moreover, $W L O G$, we can assume that $|I|=|\mathcal{I}|$. Thus, we can re-arrange terms in J to get $I=\left\{1,2, \ldots, n^{\prime}\right\}$. Now let $\frac{\delta}{2}=\max \left\{\delta^{\prime}, \delta^{\prime \prime}\right\}$. Then, since $\epsilon \geq a_{j}, b_{j}$ for each $j \in J$, we must have

$$
\sum_{j \in J}\left|b_{j}-a_{j}\right|<\frac{\delta}{2} \text { and } \sum_{i \in I}\left|b_{i}-a_{i}\right|<\frac{\delta}{2}
$$

so that

$$
\sum_{i=1}^{m}\left|b_{j}-a_{j}\right|<\delta \Longrightarrow \sum_{i=1}^{m}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\frac{\xi}{2}+\frac{\xi}{2}=\xi
$$

That is, for any $\xi>0$ we can find a δ such that for any finite family $\left\{\left(a_{i}, b_{i}\right): 1 \leq i \leq m\right\}$ of disjoint subintervals of $[0,1]$, the above holds.

If f is absolutely continuous on $[a, b]$, we can always extend the domain to $[a, b+c]$ for some constant c and define $f(x)=f(b)$ for $x>b$.

Definition 191 Let \mathcal{F} be a family of functions. \mathcal{F} is said to be uniformly summable if $\forall \epsilon>0, \exists \delta>0$ such that

$$
\mathfrak{m}_{1}(A)<\delta \Longrightarrow \int_{A}|g| d \mathfrak{m}_{1}<\epsilon
$$

for all $g \in \mathcal{F}$
Theorem 192 If f is absolutely continuous on $[a, b]$, then $\left\{D_{h} f: 0 \leq h \leq 1\right\}$ is uniformly summable. That is, $\forall \epsilon>0, \exists \delta>0$ such that

$$
\mathfrak{m}_{1}(A)<\delta \Longrightarrow \int_{A}\left|D_{h} f\right| d \mathfrak{m}_{1}<\epsilon \forall h
$$

Proof. Observe that we can assume that f is increasing so that $\left|D_{h} f\right|=D_{h} f$. Let $\epsilon>0$. We need to find a $\delta>0$ such that

$$
\int_{A} D_{h} f d \mathfrak{m}_{1}<\epsilon
$$

whenever $\mathfrak{m}_{1}(A)<\delta$. Observe further that we have a G_{δ} set G with $A \subset G$ and $\mathfrak{m}_{1}(G \backslash A)=0$. Therefore, WLOG, we can assume that A is a G_{δ} set. Thus, A is the countable intersection of open sets $\left\{G_{i}: i \in \mathbb{N}\right\}$, with $G_{n+1} \subset G_{n}$ and $\mathfrak{m}_{1}\left(G_{1}\right)<\infty$ and G_{n} is a finite disjoint union of open intervals. This follows from the construction in the proof of regularity of Lebesgue Measure because $\mathfrak{m}_{1}\left(G_{n}\right) \rightarrow \mathfrak{m}_{1}(G)$ and

$$
\int_{G_{n}} D_{h} f \rightarrow \int_{G} D_{h} f
$$

as $n \rightarrow \infty$. Now,

$$
A=\bigcup_{i=1}^{n}\left(a_{i}, b_{i}\right)
$$

where intervals are pairwise disjoint and

$$
\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta
$$

To calculate

$$
\int_{a_{j}}^{b_{j}} D_{h} f d \mathfrak{m}_{1}
$$

we observe that

$$
g_{j}(t)=f\left(b_{j}+t\right)-f\left(a_{j}+t\right)=\frac{1}{h} \int_{0}^{h} g_{j} d \mathfrak{m}_{1}
$$

so that

$$
\int_{A} D_{h} f d \mathfrak{m}_{1}=\frac{1}{h} \int_{0}^{h}\left(\sum_{i=1}^{n} g_{i}\right) d \mathfrak{m}_{1}
$$

and for every t,

$$
\sum_{i=1}^{n} g_{i}=\sum_{i=1}^{n} f\left(b_{j}+t\right)-f\left(a_{j}+t\right)<\epsilon
$$

by absolute continuity of f, where ϵ does not depend on t.
Lemma 193 Let $\left\{f_{i}: i \in \mathbb{N}\right\}$ be a family of real-valued, uniformly summable functions. If $f_{n} \rightarrow f$ almost everywhere, then for every A with $\mathfrak{m}_{1}(A)<\infty, f$ is summable on A and

$$
\int_{A} f_{n} d \mathfrak{m}_{1} \rightarrow \int_{A} f d \mathfrak{m}_{1}
$$

Proof. Since the measure of A is finite, we can split A into a union of $N A_{k}$'s, where $\mathfrak{m}_{1}\left(A_{k}\right)<\delta$ and δ comes from the uniform summability of $\epsilon=1$. Then, by Fatou's Lemma,

$$
\int_{A}|f| d \mathfrak{m}_{1} \leq \underline{\lim } \int_{A}\left|f_{n}\right| d \mathfrak{m}_{1} \leq \underline{\lim } \sum_{k=1}^{N} \int_{A_{k}}\left|f_{n}\right| d \mathfrak{m}_{1}
$$

Note that

$$
\int_{A_{k}}\left|f_{n}\right| d \mathfrak{m}_{1} \leq 1 \Longrightarrow \int_{A}|f| d \mathfrak{m}_{1} \leq N
$$

so that f is summable on $A, f \in \mathcal{L}$
Now, WLOG, assume that $f=0$ and $f_{n} \geq 0$ (otherwise take $\left|f_{n}-f\right|$). By Egoroff's Theorem, \exists a set $A_{0} \subset A$ such that $\mathfrak{m}_{1}\left(A_{0}\right)<\delta$ and f_{n} uniformly converges to $0, f_{n} \rightrightarrows 0$ on $A \backslash A_{0}$. Thus, for $n \geq N_{0}$,

$$
\int_{A} f_{n} d \mathfrak{m}_{1}=\int_{A \backslash A_{0}} f_{n} d \mathfrak{m}_{1}+\int_{A_{0}} f_{n} d \mathfrak{m}_{1}<\int_{A \backslash A_{0}} f_{n} d \mathfrak{m}_{1}+\epsilon
$$

so that

$$
\underline{\lim } \int_{A} f_{n} d \mathfrak{m}_{1} \leq \underline{\lim } \int_{A \backslash A_{0}} f_{n} d \mathfrak{m}_{1}+\underline{\lim } \epsilon
$$

ϵ does not depend on n so

$$
\underline{\lim } \int_{A} f_{n} d \mathfrak{m}_{1} \leq \epsilon \Longrightarrow \underline{\lim } \int_{A} f_{n} d \mathfrak{m}_{1}=0
$$

Theorem 194 If f is absolutely continuous on $[a, b]$, then $\int_{a}^{b} f^{\prime} d \mathfrak{m}_{1}=f(b)-$ $f(a)$

Proof. Since f is absolutely continuous, it is of bounded variation. By Corollary 178, $D_{1 / n} f \rightarrow f^{\prime}$ almost everywhere so that

$$
\int_{a}^{b} f^{\prime} d \mathfrak{m}_{1}=\int_{a}^{b} \lim _{n \rightarrow \infty}\left(D_{1 / n} f\right) d \mathfrak{m}_{1}=\lim _{n \rightarrow \infty} \int_{a}^{b}\left(D_{1 / n} f\right) d \mathfrak{m}_{1}
$$

by the previous lemma. Set $h=\frac{1}{n}$. Then,
$\lim _{h \rightarrow 0} \int_{a}^{b}\left(D_{h} f\right) d \mathfrak{m}_{1}=\lim _{h \rightarrow 0}\left[\frac{1}{h}\left(h f(b)-\int_{a}^{a+h} f d \mathfrak{m}_{1}\right)\right]=\lim _{h \rightarrow 0}\left[f(b)-\frac{1}{h} \int_{a}^{a+h} f d \mathfrak{m}_{1}\right]$
where the first equality follows similar line of reasoning as in the proof of Corollary 168. The proof can then be completed by observing that since f is continuous,

$$
\lim _{h \rightarrow 0} \int_{a}^{a+h} f d \mathfrak{m}_{1}=f(a)
$$

Theorem 195 (Fundamental Theorem of Calculus) If f is absolutely continuous on $[a, x]$, then $f(x)=f(a)+\int_{a}^{x} f^{\prime} d \mathfrak{m}_{1}$ for every x.

Theorem 196 If f is absolutely continuous on $[a, b]$ if and only if there exists a $g \in \mathcal{L}^{1}\left(\mathfrak{m}_{1}\right)$ such that $f(x)=f(a)+\int_{a}^{x} g d \mathfrak{m}_{1}$ for every x

Proof. (\Longleftarrow) Take $g=f^{\prime}$
(\Longrightarrow) Let $g \in \mathcal{L}^{1}\left(\mathfrak{m}_{1}\right)$. Then, $|g| \in \mathcal{L}^{1}\left(\mathfrak{m}_{1}\right)$ so that $\forall \epsilon>0, \exists \delta>0$ such that

$$
\mathfrak{m}_{1}(A)<\delta \Longrightarrow \int_{A} g d \mathfrak{m}_{1}<\epsilon
$$

If $\left\{\left(a_{j}, b_{j}\right): 1 \leq k \leq n\right\}$ is a disjoint collection of intervals, then

$$
\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)<\delta
$$

so that

$$
\begin{aligned}
\sum_{j=1}^{n}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right| & =\sum_{j=1}^{n}\left|\int_{\left(a_{j}, b_{j}\right)} g d \mathfrak{m}_{1}\right| \\
& \leq \sum_{j=1}^{n} \int_{\left(a_{j}, b_{j}\right)}|g| d \mathfrak{m}_{1}<\epsilon
\end{aligned}
$$

Corollary 197 If f is increasing on $[a, b]$ and

$$
\int_{a}^{b} f^{\prime} d \mathfrak{m}_{1}=f(b)-f(a)
$$

then f is absolutely continuous.
Proof. Assume for the sake of contradiction that f is not absolutely continuous. Then, from Theorem 196, we may assume that

$$
\int_{a}^{x} f^{\prime} d \mathfrak{m}_{1}<f(x)-f(a) \text { but } \int_{x}^{b} f^{\prime} d \mathfrak{m}_{1} \leq f(b)-f(x)
$$

Then,

$$
\int_{a}^{x} f^{\prime} d \mathfrak{m}_{1}+\int_{x}^{b} f^{\prime} d \mathfrak{m}_{1}<f(b)-f(a)
$$

a contradiction.
Problem 198 Let f be absolutely continuous on $[a, b]$ and $f^{\prime} \equiv 0$ almost everywhere. Prove that f is constant.

Solution 199 Let $f(a)=c$ and $x \in[a, b]$. Since f is absolutely continuous on [$a, b]$, we must have

$$
\int_{a}^{x} f^{\prime} d \mathfrak{m}_{1}=f(x)-f(a)
$$

However, since $f^{\prime} \equiv 0$ a.e., the LHS of the above equation is zero. Hence $f(x)=$ $f(a)=c$. Since x was arbitrary, we are done.

Proposition 200 For a summable function f,

$$
f \equiv 0 \text { a.e. } \Longleftrightarrow \int_{x}^{y} f d \mathfrak{m}_{1}=0 \forall x, y \in[a, b]
$$

Proof. Observe that the forward direction (\Longrightarrow) is trivial. For the reverse direction,

$$
\int_{I} f d \mathfrak{m}_{1}=0
$$

for every I tells us that

$$
\int_{G} f d \mathfrak{m}_{1}=0
$$

for any open G so that the integral has the same value for any G_{δ} set and so, we have the same value for any measurable set and for set of measure 0 . Take $E^{+}=\{x: f(x) \geq 0\}$. This set is measurable. Then,

$$
\int_{E^{+}} f d \mathfrak{m}_{1}=0
$$

but note that

$$
\int_{E^{+}} f d \mathfrak{m}_{1}=\int_{[a, b]} f^{+} d \mathfrak{m}_{1}=0
$$

so that f^{+}is zero almost everywhere. Similarly, for $E^{-}=\{x: f(x) \leq 0\}$. Then,

$$
\int_{E^{-}} f d \mathfrak{m}_{1}=0
$$

but note that

$$
\int_{E^{-}} f d \mathfrak{m}_{1}=\int_{[a, b]} f^{-} d \mathfrak{m}_{1}=0
$$

so that f^{-}is zero almost everywhere. Since $f=f^{+}-f^{-}$, we have that f is zero almost everywhere.

Theorem 201 If f is a summable function on $[a, b]$, then for almost every $x \in(a, b)$, we have

$$
\frac{d}{d x} \int_{a}^{x} f d \mathfrak{m}_{1}=f(x)
$$

Proof. Let

$$
F(x)=\int_{a}^{x} f d \mathfrak{m}_{1}
$$

Then, f is summable so that F is absolutely continuous and $F(a)=0$. This tells us that

$$
F(x)=\int_{a}^{x} F^{\prime} d \mathfrak{m}_{1}
$$

Subtracting both integrals gives us

$$
\int_{a}^{x}\left(F^{\prime}-f\right) d \mathfrak{m}_{1}=0
$$

for every $x \in[a, b]$ so that

$$
\int_{a}^{y}\left(F^{\prime}-f\right) d \mathfrak{m}_{1}=0 \Longrightarrow \int_{x}^{y}\left(F^{\prime}-f\right) d \mathfrak{m}_{1}=0 \text { for any } x, y
$$

$\Longrightarrow F^{\prime}=f$ almost everywhere by Proposition 200.

Problem 202 Let f be continuous on $[a, b]$, differentiable almost everywhere.
Then

$$
\int_{a}^{b} f^{\prime} d \mathfrak{m}_{1}=f(b)-f(a)
$$

if and only if

$$
\int_{a}^{b} \lim _{n \rightarrow \infty} D_{1 / n} f d \mathfrak{m}_{1}=\lim _{n \rightarrow \infty} \int_{a}^{b} D_{1 / n} f d \mathfrak{m}_{1}
$$

Solution $203(\Longrightarrow)$ Referring back to the reasoning in Corollary 168, we know that

$$
\int_{a}^{b} D_{h} d \mathfrak{m}_{1}=\frac{1}{h}\left(\int_{b}^{b+h} f d \mathfrak{m}_{1}-\int_{a}^{a+h} f d \mathfrak{m}_{1}\right)
$$

so that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{a}^{b} D_{1 / n} d \mathfrak{m}_{1} & =\lim _{h \rightarrow 0} \int_{a}^{b} D_{h} d \mathfrak{m}_{1} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\int_{b}^{b+h} f d \mathfrak{m}_{1}-\int_{a}^{a+h} f d \mathfrak{m}_{1}\right) \\
& =f(b)-f(a)
\end{aligned}
$$

Now, since f is differentiable almost everywhere, then

$$
\lim _{n \rightarrow \infty} D_{1 / n} f=\lim _{n \rightarrow \infty} \frac{f(x+1 / n)-f(x)}{h}=f^{\prime}
$$

Then,

$$
\int_{a}^{b} \lim _{n \rightarrow \infty} D_{1 / n} f d \mathfrak{m}_{1}=\int_{a}^{b} f^{\prime} d \mathfrak{m}_{1}=f(b)-f(a)
$$

Thus,

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} D_{1 / n} d \mathfrak{m}_{1}=\int_{a}^{b} \lim _{n \rightarrow \infty} D_{1 / n} d \mathfrak{m}_{1}
$$

(\Longleftarrow) Since

$$
\int_{a}^{b} \lim _{n \rightarrow \infty} D_{1 / n} d \mathfrak{m}_{1}=\int_{a}^{b} f^{\prime} d \mathfrak{m}_{1}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{a}^{b} D_{1 / n} d \mathfrak{m}_{1} & =\lim _{h \rightarrow 0} \int_{a}^{b} D_{h} d \mathfrak{m}_{1} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\int_{b}^{b+h} f d \mathfrak{m}_{1}-\int_{a}^{a+h} f d \mathfrak{m}_{1}\right) \\
& =f(b)-f(a)
\end{aligned}
$$

Given that

$$
\int_{a}^{b} \lim _{n \rightarrow \infty} D_{1 / n} d \mathfrak{m}_{1}=\lim _{n \rightarrow \infty} \int_{a}^{b} D_{1 / n} d \mathfrak{m}_{1}
$$

it follows that

$$
\int_{a}^{b} f^{\prime} d \mathfrak{m}_{1}=f(b)-f(a)
$$

We even the famed product rule!
Problem 204 Let f and g be absolutely continuous on $[a, b]$. Show that

$$
\int_{a}^{b} f \cdot g^{\prime} d \mathfrak{m}_{1}=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime} . g d \mathfrak{m}_{1}
$$

Solution 205 By Proposition 183, f.g is absolutely continuous on $[a, b]$. Recall that $(f . g)^{\prime}=f g^{\prime}+f^{\prime} g$. Also recall that absolute continuity on $[a, b]$ of f (and g) tells us that

$$
\int_{a}^{b} f^{\prime} d \mathfrak{m}_{1}=f(b)-f(a) \text { and } \int_{a}^{b} g^{\prime} d \mathfrak{m}_{1}=g(b)-g(a)
$$

Then,

$$
\int_{a}^{b} f^{\prime} \cdot g d \mathfrak{m}_{1}+\int_{a}^{b} f \cdot g^{\prime} d \mathfrak{m}_{1}=\int_{a}^{b}(f \cdot g)^{\prime} d \mathfrak{m}_{1}=f(b) g(b)-f(a) g(a)
$$

Rearranging this gives us the desired result.
Problem 206 Let f be strictly increasing and absolutely continuous on $[0,1]$. Show that

1. If $G \subset(0,1)$ is open, then

$$
\int_{G} f^{\prime} d \mathfrak{m}_{1}=\mathfrak{m}_{1}(f(G))
$$

2. Show the same when G is a G_{δ} set
3. Show the same when $\mathfrak{m}_{1}(G)=0$.
4. Deduce that the same is true for any measurable set G.

Solution 207 1. Since G is open, G is a disjoint union of half-open intervals $\left\{I_{i}: i \in \mathbb{N}\right\}$, where I_{i} are allowed to be empty for some i and that $\mathfrak{m}_{1}\left(I_{i}\right) \in[0,1)$ for each i. Thus, we can have

$$
\begin{equation*}
\int_{G} f^{\prime} d \mathfrak{m}_{1}=\int_{\cup I_{i}} f^{\prime} d \mathfrak{m}_{1}=\sum_{i=1}^{\infty} \int_{I_{i}} f^{\prime} d \mathfrak{m}_{1} \tag{9}
\end{equation*}
$$

Let end-points of interval I_{i} be a_{i} and b_{i}, where $a_{i} \leq b_{i}$ (half open degenerate intervals are empty). Since f is strictly increasing and absolutely continuous on $[0,1]$, we must have, for each i,

$$
\int_{I_{i}} f^{\prime} d \mathfrak{m}_{1}=f\left(b_{i}\right)-f\left(a_{i}\right)
$$

Since

$$
\mathfrak{m}_{1}(G)=\sum_{i=1}^{\infty} \mathfrak{m}_{1}\left(I_{i}\right)=\sum_{i=1}^{\infty} b_{i}-a_{i}
$$

Moreover, since f is increasing and $b_{i} \geq a_{i}$, by Problem 30, we must have $\mathfrak{m}_{1}\left(f\left(I_{i}\right)\right)=f\left(b_{i}\right)-f\left(a_{i}\right)$. It follows that

$$
\sum_{i=1}^{\infty} \mathfrak{m}_{1}\left(f\left(I_{i}\right)\right)=\sum_{i=1}^{\infty} f\left(b_{i}\right)-f\left(a_{i}\right)=\mathfrak{m}_{1}(f(G))
$$

By Eq. (9), we are done.
2.
3.
4. Let E be a measurable set. Then, E can be written as the disjoint union of countable number of open, half-open, degenerate intervals and G_{δ} sets. Let

$$
E=\bigcup_{i=1}^{\infty} E_{i} \Longrightarrow f(E)=\bigcup_{i=1}^{\infty} f\left(E_{i}\right)
$$

Since f is strictly increasing, $f\left(E_{i}\right)$ is pairwise disjoint. Moreover, if a_{i} and b_{i} are (not necessarily distinct) endpoints of E_{i}, then $\mathfrak{m}_{1}\left(f\left(E_{i}\right)\right)=f\left(b_{i}\right)-f\left(a_{i}\right)$ so that

$$
\sum_{i=1}^{\infty} \mathfrak{m}_{1}\left(f\left(E_{i}\right)\right)=\sum_{i=1}^{\infty} f\left(b_{i}\right)-f\left(a_{i}\right)=\mathfrak{m}_{1}(f(E))
$$

It follows that

$$
\int_{E} f^{\prime} d \mathfrak{m}_{1}=\sum_{i=1}^{\infty} \int_{E_{i}} f^{\prime} d \mathfrak{m}_{1}=\sum_{i=1}^{\infty} \mathfrak{m}_{1}\left(f\left(E_{i}\right)\right)=\mathfrak{m}_{1}(f(E))
$$

As seen above, the notion of absolute continuity is closely tied the the Fundamental Theorem of Calculus for the Lebesgue integral and filters the idea of bounded variation, crucially relying on compatibility with arbitrary but disjoint sums. Can we do better than disjoint sums? Let us agree to call a function $f:[a, b] \longrightarrow \mathbb{R}$ super absolutely continuous if for any $\epsilon>0$, there exists a $\delta>0$ such that for a finite family of intervals (not necessarily disjoint) $\left\{\left(a_{i}, b_{i}\right): 1 \leq i \leq n\right\}$, we have

$$
\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)<\delta \Longrightarrow \sum_{j=1}^{n}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\epsilon
$$

Is it true that f is absolutely continuous implies that f is super absolutely continuous? No. Let $\epsilon>0$ and consider $f:[0,1] \longrightarrow[0,1]$ defined by $x \longmapsto \sqrt{x}$. Then, by Archimedean's Principle, $\exists n$ such that $\epsilon>\frac{1}{n}$. Now, consider the family $\{(0,1 / i): 1 \leq i \leq n\}$. Then,

$$
\sum_{j=1}^{n}|f(1 / j)-f(0)|=\sum_{j=1}^{n} 1 / \sqrt{j}<n \nless \epsilon
$$

for any δ. However, \sqrt{x} is absolutely continuous. To show this, observe that \sqrt{x} is increasing on $[0,1]$. Moreover, since f^{\prime} is continuous on $(0,1)$, it is Riemann Integrable, so that

$$
\int_{[0, x]} \frac{1}{2 \sqrt{x}} d \mathfrak{m}_{1}=\int_{0}^{x} \frac{1}{2 \sqrt{x}} d x=f(x)-f(0)=\sqrt{x}
$$

Hence f is absolutely continuous on $[0,1]$.

4.3 A Pathological Function

When we were building the Cantor set C, at the k-th step, we threw away, in total, $2^{k}-1$ open intervals (this includes those thrown away at k-th step!). Let $O_{k}=I_{1}^{k} \cup I_{2}^{k} \cup \ldots \cup I_{2^{k}-1}^{k}$ be the union of these open intervals at the k-th step. Note that $O_{k} \subset O_{k+1}$. Define $\varphi(x)=m / 2^{k}$ for $x \in I_{m}^{k}$. To show that φ is welldefined, let us explore some of its values. At $k=1, \varphi(x)=1 / 2$ in the middle erased interval and at $k=2, \varphi(x)=2 / 2^{2}$ in the same interval. Moreover, in the second erased interval $(1 / 9,2 / 9), \varphi(x)=1 / 4$ and at $(7 / 9,8 / 9), \varphi(x)=3 / 4$. Now, to show that φ is indeed well-defined, assume $I \subset O_{k}$ and $I \subset O_{k+1}$. Then, $I=I_{2 m}^{k+1}$ and $I=I_{m}^{k}$ so that in $O_{k}, \varphi(x)=2 m / 2^{k+1}=m / 2^{k}$.
φ is increasing on each O_{k}. Let

$$
O=\bigcup_{k=1}^{\infty} O_{k}
$$

and define $\varphi(0)=0$. Then, $\varphi(x)=\sup \{\varphi(t): t<x: t \in O, x \in[0,1] \backslash O=C\}$ φ is continuous on O. To show this, note that φ is constant on each open interval. However, φ is not constant on $[0,1]$. Moreover, $\mathfrak{m}_{1}(O)=1$.

Let $x_{0} \in O$, then $\varphi\left(x_{0}\right)$ is constant around x_{0}. Assume that $x_{0} \in C$ where $1 \neq x_{0} \neq 0$. If k is any number, then x_{0} lies between I_{m}^{k} and I_{m+1}^{k}. The idea is that if φ is not continuous at x_{0}, it only has the choice of jumping at x_{0} since φ is increasing on a closed and bounded interval. Take $b_{k} \in I_{m+1}^{k}$ and $a_{k} \in I_{m}^{k}$. Then, $a_{k}<x_{0}<b_{k}$ and that $\varphi\left(a_{k}\right)=\frac{m}{2^{k}}$ and $\varphi\left(b_{k}\right)=\frac{m+1}{2^{k}}$. Thus, $\varphi\left(b_{k}\right)-\varphi\left(a_{k}\right)=1 / 2^{k}$. As k increases, the jump vanishes: if φ has a jump at x_{0}, we always have, for some $\delta>0, \varphi(b)-\varphi(a) \geq \delta$ if $a<x_{0}<b$ where $\varphi(b) \geq \varphi\left(x_{0}^{+}\right)$and $\varphi(a) \leq \varphi\left(x_{0}^{-}\right)$so that $\varphi(b)-\varphi(a) \geq \varphi\left(x_{0}^{+}\right)-\varphi\left(x_{0}^{-}\right)$, a contradiction.
φ is not absolutely continuous since the fundamental theorem does not hold.

Proof. Let $O=[0,1] \backslash C$. Let us look at $\varphi(O)$. Since

$$
O=\bigcup_{k=1}^{\infty} I_{k}
$$

where I_{k} are disjoint intervals, not necessarily in increasing order. By construction, $\left.\psi\right|_{I_{k}}$ is constant for each k. Note that $\varphi\left(I_{k}\right)=I_{k}+c$, where $\varphi\left(I_{k}\right)=c$. Thus, φ translates I_{k} and so $\mathfrak{m}_{1}\left(\varphi\left(I_{k}\right)\right)=\mathfrak{m}_{1}\left(I_{k}\right)$. Moreover, $\left\{\varphi\left(I_{k}\right): k \in \mathbb{N}\right\}$ is a disjoint family since φ is increasing. Thus,

$$
\mathfrak{m}_{1}(\varphi(O))=\sum_{k=1}^{\infty} \mathfrak{m}_{1}\left(\varphi\left(I_{k}\right)\right)=\sum_{k=1}^{\infty} \mathfrak{m}_{1}\left(I_{k}\right)=\mathfrak{m}_{1}(O)=1
$$

Note that $\varphi(O) \cap \varphi(C)=\varnothing$ and that $\mathfrak{m}_{1}(\varphi([0,1]))=2$ so that $\mathfrak{m}_{1}(\varphi(C))=$ $2-\mathfrak{m}_{1}(\varphi(O))=1$.

Corollary $208 \exists$ a subset of a Cantor set A, measurable by completeness of Lebesgue measure, such that $\varphi(A) \notin \mathfrak{M}_{1}$.

Proof. We will use the fact that $[0,1]$ has a non-measurable set. Any subset $E \subset[0,1]$ (not necessarily with finite out measure) with $\mathfrak{m}_{1}(E)>0$ contains a non-measurable subset (exercise). Therefore, $\exists B \subset \varphi(C)$ such that $B \notin \mathfrak{M}_{1}$. Now, define $A=\varphi^{-1}(B)$. Then, $A \subset C$ but $B=\varphi(A) \notin \mathfrak{M}_{1}$

As a remark, we state without proof that if $A \in \mathfrak{L}_{1}$ and f is a strictly increasing and continuous function, then $f(A) \in \mathfrak{L}_{1}$. To show that, one may proceed by observing that A may be split into intervals. We can now show that \mathfrak{L}_{1} is not complete.
Proof. We need to show that $\exists A \in \mathfrak{M}_{1}$ but $A \notin \mathfrak{L}_{1}$. Take $A \subset C$. Then, $\psi(A) \notin \mathfrak{M}_{1}$. Since $\mathfrak{m}_{1}(C)=0, A \in \mathfrak{M}_{1}$. If A was in \mathfrak{L}_{1}, then by previous fact, $\psi(A) \in \mathfrak{L}_{1} \subset \mathfrak{M}_{1}$, a contradiction. Thus, $\left(\mathbb{R}, \mathfrak{L}_{1}, \mathfrak{m}_{1}\right)$ is not complete.

5 Differentiation of Measures

In this section, our big goal is to split our master set X into a positive and negative set, where positive and negative have a different technical name.

5.1 Signed Measures

Definition 209 Let \mathfrak{A} be a σ-algebra on X, and $v: \mathfrak{A} \longrightarrow[-\infty, \infty]$. Then, v is called a signed measure or a charge if

1. $v(\varnothing)=0$
2. v assumes either $+\infty$ or $-\infty$ for any $A \in \mathfrak{A}$
3. If $\left\{A_{k}: k \in \mathbb{N}\right\} \subset \mathfrak{A}$ is a family of disjoint sets, then

$$
A=\bigcup_{k=1}^{\infty} A_{k} \Longrightarrow v(A)=\sum_{k=1}^{\infty} v\left(A_{k}\right)
$$

and the series converges absolutely if $|v(A)|<\infty$.
We call a set $A \in \mathfrak{A}$ positive if for every measurable $E \subset A$, we have $v(E) \geq 0$ and null if for every measurable $E \subset A$, we have $v(E)=0$

Example 210 Assume that we have two signed measures, μ_{1}, μ_{2}. Then, $\mu_{1}-\mu_{2}$ is not necessarily subadditive hence not even countably additive. However, it is additive and gives zero at the empty set.

Example 211 Let f be a μ-measurable function, then

$$
v(A)=\int_{A} f d \mu
$$

is a signed measure. Notice that if we let $E^{+}=\{x: f(x) \geq 0\}$ and $E^{-}=$ $\{x: f(x) \leq 0\}$, then $X=E^{-} \cup E^{+}$and

$$
\int_{E^{+}} f d \mu=\int_{X} f^{+} d \mu \text { and } \int_{E^{--}} f d \mu=\int_{X} f^{-} d \mu
$$

Proposition 212 If A is positive, $E \subset A$ is measurable, then E is positive.
Proof. Obvious
Proposition 213 If $\left\{A_{i}: i \in \mathbb{N}\right\}$ is positive for each i, then so is the union of the family.

Proof. Let

$$
E \subset \bigcup_{k=1}^{\infty} A_{k}
$$

and $E_{1}=E \cap A_{1}, E_{2}=\left(E \cap A_{2}\right) \backslash E_{1}, \ldots, E_{n}=\left(E \cap A_{n}\right) \backslash\left(E_{1} \cup \ldots \cup E_{n-1}\right)$ and pairwise disjoint. Then, $v\left(E_{k}\right) \geq 0$ for each k and

$$
v(E)=\sum_{k=1}^{\infty} v\left(E_{k}\right) \geq 0
$$

Lemma 214 (Hahn) Let $0<v(A)<\infty$. Then, there exists a positive set $E \subset A$ with $v(E)>0$.

Proof. If A is positive, we are done, since A has strictly positive measure. If A is not positive, then $\exists \widetilde{A} \subset A, v(\widetilde{A})<0$. Let

$$
m_{1}=\min \{m \in \mathbb{N}: \exists \widetilde{A} \subset A, v(\widetilde{A})<-1 / m\}
$$

and take A_{1} with $v\left(A_{1}\right)<-1 / m_{1}$. If $A \backslash A_{1}$ is positive, then we are done. Otherwise, let

$$
m_{2}=\min \left\{m \in \mathbb{N}: \exists \widetilde{A} \subset A \backslash A_{1}, v(\widetilde{A})<-1 / m_{1}, v\left(A_{2}\right)<-1 / m_{2}\right\}
$$

Assume that we have A_{1}, \ldots, A_{n}. That is, at the n-th step, if

$$
A \backslash \bigcup_{k=1}^{n} A_{k}
$$

is not positive, we have

$$
m_{n}=\min \left\{m \in \mathbb{N}: \exists \widetilde{A} \subset A \backslash \bigcup_{k=1}^{n-1} A_{k}, v(\widetilde{A})<-1 / m_{1}, v\left(A_{n}\right)<-1 / m_{n}\right\}
$$

Now we have $A_{n+1} \subset A \backslash\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)$ with $v\left(A_{n+1}\right)<-1 / m_{n}$. We now claim that

$$
E=A \backslash \bigcup_{n=1}^{\infty} A_{n}
$$

is positive. Note that the A is the union of two disjoint sets:

$$
A=E \cup \bigcup_{n=1}^{\infty} A_{n} \Longrightarrow v(A)=v(E)+v\left(\bigcup_{n=1}^{\infty} A_{n}\right)
$$

$v(A)<\infty$, then the right hand side is also finite. In particular, v for the infinite union is finite. Thus,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|v\left(A_{n}\right)\right| & <\infty \Longrightarrow-\infty<\sum_{n=1}^{\infty} v\left(A_{n}\right)<\sum_{n=1}^{\infty}-\frac{1}{m_{n}} \\
& \Longrightarrow \sum_{n=1}^{\infty} \frac{1}{m_{n}}<\infty \Longrightarrow \lim _{n \rightarrow \infty} m_{n}=\infty
\end{aligned}
$$

Now let $B \subset E$. Our goal is to show that $v(B) \geq 0$. Note that we can have an $N \in \mathbb{N}$ such that

$$
B \subset A \backslash \bigcup_{n=1}^{\infty} A_{n} \subset A \backslash \bigcup_{n=1}^{N} A_{n}
$$

Then, because m_{N} was the minimum, we have $v(B) \geq 1 /\left(m_{N}-1\right)$. This is true for every N so we can apply limit and get $v(B) \geq 0$.

Now, finally

$$
v(A) \geq 0 \Longrightarrow v(A \backslash E)=v(A)-v(E)=v\left(\bigcup_{n=1}^{\infty} A_{n}\right)<0
$$

so that $v(E)>0$.
Essentially, for any given set X, we can split X into two disjoint sets, one for positive and the other for negative

Theorem 215 (Hahn Decomposition) Let v be a signed measure on (X, \mathfrak{A}). Then, $\exists A \subset X$ with A positive and $\exists B \subset X$ with B negative such that $X=A \cup B$ and $A \cap B=\varnothing$

Proof. WLOG, we can assume that v is never ∞. If $v(E) \leq 0$ for every $E \subset X$, then set $A=\varnothing$ and $B=X$. If there exists an E with $v(E)>0$, then, by Hahn's Lemma, we can have a positive subset. Let $\lambda=\sup \{v(E): E$ is positive $\}$. Note that $\lambda \geq 0$. By definition of supremum, there exists a sequence of sets $\left\{A_{k}: k \in \mathbb{N}\right\}$ such that $v\left(A_{k}\right) \rightarrow \lambda$ as $k \rightarrow \infty$.

Set

$$
A=\bigcup_{k=1}^{\infty} A_{k}
$$

since union of positive sets is positive, A is positive. Thus, $\lambda \geq v(A)$. On the other hand, $A \backslash A_{k} \subset A$ so that $v\left(A \backslash A_{k}\right) \geq 0$. Since both sets have finite measure, we have $v(A) \geq v\left(A_{k}\right)$ for each k. Taking limit on both sides, we get $\lambda \leq v(A)$. Thus, $\lambda=v(A)$.

Now let $B=X \backslash A$. We need to show that B is negative. If not, then there exists an $E \subset B$ with $v(E)>0$. Thus, there is a positive subset $\widetilde{E} \subset E$ such that $0<v(\widetilde{E})$. Then, $A \cup \widetilde{E}$ is also positive. Moreover, $v(A)+v(\widetilde{E}) \geq$ $v(A)=\lambda$, a contradiction to the fact that λ is the supremum. Thus, B is indeed negative.

We then get the following useful corollary, which we state without proof.
Corollary 216 (Jordan Decomposition) Ifv is a signed measure, then there exist two measures ν^{+}and ν^{-}(not signed!) such that $v=v^{+}-v^{-}$and there exist sets A and B such that $A \cup B=X, A \cap B=\varnothing, v^{+}(B)=v^{-}(A)=0$.

Problem 217 This Jordan Decomposition in unique
Solution 218 Assume that \exists measures ν^{+}and ν^{-}(not signed!), positive $A \in \mathfrak{A}$ and negative $B \in \mathfrak{A}$ such that $X=A \cup B$ and $A \cap B=\varnothing$ such that $v=v^{+}-v^{-}$ and $v^{+}(B)=v^{-}(A)=0$. Let $v=\mu^{+}-\mu^{-}$be another Jordan decomposition of v with positive and negative A^{\prime} and B^{\prime}. We first need to show that consideration of different sets is immaterial.

Consider $A \triangle A^{\prime}=A \cup A^{\prime} \backslash\left(A \cap A^{\prime}\right)$. Let $E \subset\left(A \cup A^{\prime}\right) \backslash\left(A \cap A^{\prime}\right)$ be measurable. In particular, $E \subset A \cup A^{\prime}$. Then, $v(E) \geq 0$. Since $\left(A \cup A^{\prime}\right) \backslash\left(A \cap A^{\prime}\right)=$
$\left(A \cup A^{\prime}\right) \cap\left(A^{c} \cup A^{\prime c}\right)=\left(A \cup A^{\prime}\right) \cap\left(B \cup B^{\prime}\right)$, then, in particular, $E \subset B \cup B^{\prime}$. Hence $v(E) \leq 0$ so that $v(E)=0$. Thus, $A \triangle A^{\prime}$ is a null-set with respect to v. Similarly, $B \triangle B^{\prime}$ is a null set with respect to v.

Now let us focus on $v=\mu^{+}-\mu^{-}$. By above, we can work with same A and B. Let $E \in \mathfrak{A}$. Then, $E \cap A \subset A$ so that $v(E \cap A)=v^{+}(E \cap A)-v^{-}(E \cap A)$. Since $E \cap A$ is positive, $v^{-}(E \cap A)=0$. Thus, $v(E \cap A)=v^{+}(E \cap A)$. Now, since v^{+}is a measure and A is v^{+}-measurable, for any set $E, v^{+}(E)=v^{+}(E \cap A)+$ $v^{+}\left(E \cap A^{c}\right)=v^{+}(E \cap A)+v^{+}(E \cap B)$. Since $E \cap B$ is negative, $v^{+}(E \cap B)=$ 0 .

Thus, $v^{+}(E)=v^{+}(E \cap A)=v(E \cap A)$. Since $v\left(A \triangle A^{\prime}\right)=0$, we must have $v(E \cap A)=v\left(E \cap A^{\prime}\right)$. Also since $v=\mu^{+}-\mu^{-}$, we can have $v\left(E \cap A^{\prime}\right)=$ $\left(\mu^{+}-\mu^{-}\right)\left(E \cap A^{\prime}\right)=\mu^{+}\left(E \cap A^{\prime}\right)-\mu^{-}\left(E \cap A^{\prime}\right)$. Since $E \cap A^{\prime}$ is positive, $\mu^{-}\left(E \cap A^{\prime}\right)=0$. Hence $v\left(E \cap A^{\prime}\right)=\mu^{+}\left(E \cap A^{\prime}\right)$.

Thus far, we have that $v^{+}(E)=v^{+}(E \cap A)=\mu^{+}\left(E \cap A^{\prime}\right)$. Now, again, $\mu^{+}(E)=\mu^{+}\left(E \cap A^{\prime}\right)+\mu^{+}\left(E \cap A^{\prime c}\right)=\mu^{+}\left(E \cap A^{\prime}\right)+\mu^{+}\left(E \cap B^{\prime}\right)=\mu^{+}\left(E \cap A^{\prime}\right)+$ 0.

In summary, for any $E, v^{+}(E)=\mu^{+}(E)$. Hence $v^{+}=\mu^{+}$. Combining this with the assumption that $v^{+}-v^{-}=\mu^{+}-\mu^{-}$gives us $v^{-}=\mu^{-}$. Thus, the Jordan decomposition is unique.

Problem 219 For a signed measure, define

$$
|v|(E)=v^{+}(E)+v^{-}(E)
$$

Show that $|v|(E)$ is equal to

$$
\sup \sum_{k=1}^{n}\left|v\left(E_{k}\right)\right|
$$

where supremum is taken over all finite disjoint families $\left\{E_{k}: 1 \leq k \leq n\right\}$ of measurable subsets of X.

Solution 220 Let $E \in \mathfrak{A}$. Then, $v(E)=v^{+}(E)-v^{-}(E) \leq v^{+}(E) \leq v^{+}(E)+$ $v^{-}(E)=|v|(E)$. Conversely, $-v(E)=v^{-}(E)-v^{+}(E) \leq v^{-}(E) \leq v^{+}(E)+$ $v^{-}(E)=|v|(E)$. That is, $-|v|(E) \leq v(E)$. Together, these imply that $|v(E)| \leq$ $|v|(E)$ for any measurable E. Let $\left\{E_{k}: 1 \leq k \leq n\right\}$ be a disjoint family of E. Then, note that

$$
|v|(E)=v^{+}(E)+v^{-}(E)=\sum_{k=1}^{n} v^{+}\left(E_{k}\right)+\sum_{k=1}^{n} v^{-}\left(E_{k}\right)=\sum_{k=1}^{n}|v|\left(E_{k}\right)
$$

Moreover, we have that $\left|v\left(E_{k}\right)\right| \leq|v|\left(E_{k}\right) \forall k$. Thus,

$$
\sum_{k=1}^{n}\left|v\left(E_{k}\right)\right| \leq \sum_{k=1}^{n}|v|\left(E_{k}\right)=|v|(E)
$$

Since this holds for an arbitrary decomposition of E, we must have

$$
\sup \sum_{k=1}^{n}\left|v\left(E_{k}\right)\right| \leq|v|(E)
$$

On the other hand, by Hahn Decomposition, \exists positive A and negative B such that $X=A \cup B$. Then, $|v|(X)=v^{+}(A)+v^{-}(B)=\left|v^{+}(A)\right|+\left|v^{-}(B)\right|$ with $A \cap B=\varnothing$. Now, note that for any measurable E can be partitioned using these positive and negative sets (which is a candidate for the supremum) since $E=E \cap X=E \cap(A \cup B)=(E \cap A) \cup(E \cap B)$ and that $|v|(E)=$ $v^{+}(E)+v^{-}(E)=v^{+}(E \cap A)+v^{-}(E \cap A)+v^{+}(E \cap B)+v^{-}(E \cap B)$
$=v^{+}(E \cap A)+v^{-}(E \cap B) \leq v(E \cap A)+v(E \cap B) \leq|v(E \cap A)|+|v(E \cap B)|$. Thus, the other side of the inequality holds.

Assuming that f is positive and measurable and that

$$
\int_{E} f d \mu=0
$$

whenever $\mu(E)=0$, then for any measurable set A, we can define the measure

$$
v(A)=\int_{A} f d \mu
$$

Thus, if v and μ are defined on (X, \mathfrak{A}), we say that v is absolutely continuous with respect to μ if $\mu(E)=0 \Longrightarrow v(E)=0$. The notation in this case is $v \ll \mu$.

Theorem 221 Assume that $v(X)<\infty$. Then, $v \ll \mu \Longleftrightarrow \forall \epsilon>0, \exists \delta>0$: $\forall E \in \mathfrak{A}, \mu(E)<\delta \Longrightarrow v(E)<\epsilon$

Proof. (\Longleftarrow) Fix any ϵ; take E with $\mu(E)=0$. Then, $\mu(E)=0<\delta \Longrightarrow$ $v(E)<\epsilon$. Since this is true for any ϵ, then $v(E)=0$.
(\Longrightarrow) For the sake of contradiction, assume that the conclusion fails. Then, $\exists \epsilon_{0}>0: \forall \delta>0, \exists E \in \mathfrak{A}$, which depends on $\delta, \mu(E)<\delta$ but $v(E) \geq \epsilon$.

Let E_{n} be subsets of E such that $\mu\left(E_{n}\right)=1 / 2^{n}$ and let

$$
A_{N}=\bigcup_{k \geq N} E_{k} \Longrightarrow \mu\left(A_{N}\right) \leq \sum_{k=N}^{\infty} \frac{1}{2^{k}}=\frac{1}{2^{N-1}}
$$

Now let

$$
A=\bigcap_{N=1}^{\infty} A_{N}
$$

Then, $\mu(A) \leq \mu\left(A_{N}\right) \leq 1 / 2^{N-1}$ for every N so that $\mu(A)=0$. However, $v(A)>0$: to see this, note that $v\left(A_{N}\right) \geq v\left(E_{N}\right) \geq \epsilon_{0}$. Since $v\left(A_{1}\right) \leq v(X)<$ ∞, then $v(A)=\lim _{N \rightarrow \infty} v\left(A_{N}\right) \geq \epsilon_{0}$. That is, $v(A)>0$.

Example 222 Take $\mu=\mathfrak{m}_{1}$ and $v=\delta_{0}$ measure. The latter works like a charge at 0 . Then, it is not true that $v \ll \mu$ because $\mu(\{0\})=0$ but $v(\{0\})=1$.

Theorem 223 (Radon-Nikodym) If v, μ are both σ-finite measures on the same σ-algebra \mathfrak{A} and $v \ll \mu$, then \exists a nonnegative, measurable (not necessarily summable) function f such that $v(E)=\int_{E} f d \mu$.

Proof. Assume μ, v are both finite. Also assume that $v(X)>0$, for otherwise $f \equiv 0$ works and gives us the trivial case. For $t>0$, denote $\lambda_{t}=v-t \mu$. λ_{t} is a signed measure but not necessarily nonnegative. We can have sets P_{t} and N_{t} which are, respectively, positive for λ_{t} and negative for λ_{t} with $P_{t} \cap N_{t}=\varnothing$ and $P_{t} \cup N_{t}=X$ by the Hahn Decomposition. We need to fix t. We claim that $\exists t$ with $\mu\left(P_{t}\right)>0$. Assume that is not true. Then, for $\forall E \in \mathfrak{A}$, we have $\lambda_{t}(E) \leq 0$ since $\lambda_{t}(E)=\lambda_{t}\left(E \cap P_{t}\right)+\lambda_{t}\left(E \cap P_{t}^{c}\right)=\lambda_{t}\left(E \cap P_{t}\right)+\lambda_{t}\left(E \cap N_{t}\right)$
$=\lambda_{t}\left(E \cap P_{t}\right)=(v-t \mu)\left(E \cap P_{t}\right)=v\left(E \cap P_{t}\right)-t \mu\left(E \cap P_{t}\right) \leq 0$. Thus, $v(X) \leq t \mu(X)$ for every t. But then, $v(X)=0$, a contradiction.

Now, define the family

$$
\mathcal{F}=\left\{f \geq 0: \int_{E} f d \mu \leq v(E) \forall E \in \mathfrak{A}\right\}
$$

This set is non-empty since $f \equiv 0 \in \mathcal{F}$. Is there a non-trivial function? Define $f=t . \chi_{P_{t}}$ where $\mu\left(P_{t}\right)>0$. Then,

$$
\int_{E} f d \mu=t \mu\left(E \cap P_{t}\right)
$$

Since $\lambda_{t}\left(E \cap P_{t}\right) \geq 0$, we must have $t \mu\left(E \cap P_{t}\right) \leq v\left(E \cap P_{t}\right) \leq v(E)$
We need to find the "biggest" possible f. Let us consider the "average".

$$
M=\sup _{f \in \mathcal{F}} \int_{X} f d \mu
$$

Then, $M>0$. Our next goal is to show that the supremum is actually obtained by showing that $\exists f \in \mathcal{F}$ with

$$
M=\int_{X} f d \mu
$$

Observe that if $f, g \in \mathcal{F}$, then $h=\max (f, g) \in \mathcal{F}$. To show this, if $E \in \mathfrak{A}$, take $E_{1}=\{x \in E: f \geq g\}$ and $E_{2}=\{x \in E: f<g\}$. Then,

$$
\int_{E} h d \mu=\int_{E_{1}} h d \mu+\int_{E_{2}} h d \mu=\int_{E_{1}} f d \mu+\int_{E_{2}} g d \mu \leq v\left(E_{1}\right)+v\left(E_{2}\right) \leq v(E)
$$

Now let $\left\{f_{n}: n \in \mathbb{N}\right\} \subset \mathcal{F}$ such that

$$
\int_{X} f_{n} d \mu \rightarrow M
$$

Take $g_{n}=\max \left(f_{1}, \ldots, f_{n}\right)$. Then, g_{n} is an increasing sequence and $g(x)=$ $\lim _{n \rightarrow \infty} g_{n}(x)$ is well-defined. By Monotone Convergence Theorem,

$$
\int_{E} g d \mu=\lim _{n \rightarrow \infty} \int_{E} g_{n} d \mu
$$

Since each $g_{n} \in \mathcal{F}$, then, for each n, the left hand side is less than the limit of $v(E)$. That is, $v(E)$ itself. On the other hand,

$$
\int_{X} g d \mu \geq \int_{X} g_{n} d \mu \rightarrow M \Longrightarrow \int_{X} g d \mu=M
$$

Now assume that for the measure space $(X, \mathfrak{A}), \mu$ and ν are σ-finite on X. Then, $\exists\left\{X_{n}: n \in \mathbb{N}\right\} \subset \mathfrak{A}$ such that

$$
X=\bigcup_{n=1}^{\infty} X_{n}
$$

where $\mathfrak{m}_{1}\left(X_{n}\right)<\infty$ for each n. WLOG, we can assume that $X_{n} \subset X_{n+1}$. Restricting μ on the subspace σ-algebra $\mathfrak{A}_{X_{n}}=\left\{E \cap X_{n}: E \in \mathfrak{A}\right\}$ gives us a finite measures $\left.\mu\right|_{\mathfrak{A}_{X_{n}}}:=\mu_{n}$ and $\left.\nu\right|_{\mathfrak{A}_{X_{n}}}:=\nu_{n}$ on $\sigma_{X_{n}}$ for each n since $\mathfrak{m}_{1}\left(X_{n}\right)<$ ∞.

This enables us to use the previous case of ν and μ being finite measures; for each n, we can find a unique function f_{n} measurable with respect to $\mathfrak{A}_{X_{n}}$ such that

$$
\nu_{n}(E)=\int_{E} f_{n} d \mu_{n} \text { for all } E \in \mathfrak{A}_{X_{n}}
$$

Now, if $n \leq m$, then $X_{n} \subset X_{m}$ so that $\mathfrak{A}_{X_{n}} \subset \mathfrak{A}_{X_{m}}$. Thus, μ_{n} is the restriction of μ_{m} such that $\mu_{n}=\mu_{m}$ for $E \in \mathfrak{A}_{X_{n}}$. That is, μ_{n} can be extended to μ_{m}. It follows that

$$
\text { for all } E \in \mathfrak{A}_{X_{n}}, \nu_{n}(E)=\int_{E} f_{n} d \mu_{n}=\int_{E} f_{m} d \mu_{m}=\nu_{m}(E)
$$

so that ν_{n} is the restriction of ν_{m}. Since f_{n} is unique, $f_{n}=f_{m}$ for all $X_{n} \backslash A$ where $\mu_{n}(A)=0$. Therefore, if $F \in \mathfrak{A}$, then

$$
\nu_{n}\left(F \cap X_{n}\right)=\int_{F} f_{n} d \mu_{n} \text { for all } F \in \mathfrak{A}
$$

Note that $F \cap X_{n} \subset F \cap X_{n+1}$ since $X_{n} \subset X_{n+1}$ and that

$$
F=F \cap X=F \cap \bigcup_{n=1}^{\infty} X_{n}=\bigcup_{n=1}^{\infty}\left(F \cap X_{n}\right)
$$

Thus, by continuity from above,

$$
\nu(F)=\nu\left(\bigcup_{i=1}^{\infty}\left(F \cap X_{n}\right)\right)=\lim _{n \rightarrow \infty} \nu_{n}\left(F \cap X_{n}\right)
$$

Let $g_{n}=\max \left\{f_{1}, \ldots, f_{n}\right\}$. Then, $\left\{g_{n}: n \in \mathbb{N}\right\}$ is a monotone increasing sequence of sets in X. Let $g=\lim _{n \rightarrow \infty} g_{n}$ (we don't necessarily need g to be summable). Since for each n, g_{n} is μ-measurable, then g is also μ-measurable. Moreover, by Monotone Convergence Theorem,

$$
\int_{F \cap X_{n}} \lim _{n \rightarrow \infty} g_{n} d \mu_{n}=\lim _{n \rightarrow \infty} \int_{F \cap X_{n}} g_{n} d \mu_{n}=\int_{F} g d \mu
$$

so that there exists a μ-measurable function g such that, for any $F \in \mathfrak{A}$

$$
\nu(F)=\int_{F} g d \mu
$$

Problem 224 (a) Characterize the measure spaces (X, \mathfrak{A}, μ) for which the counting measure \mathfrak{M} is absolutely continuous with respect to μ; and (b) characterize the measure spaces for which, given $x \in X$, the measure δ_{x} is absolutely continuous with respect to μ.

Solution 225 (a) We know that for any $E \in \mathfrak{A}, \mu(E)=0 \Longrightarrow \mathfrak{M}(E)=0$. In other words, $\mathfrak{M}(E) \neq 0 \Longrightarrow \mu(E) \neq 0$. If $\mathfrak{M}(E) \neq 0$, then E is non-empty. Since \mathfrak{M} is defined on 2^{X}, we must have μ defined on $\mathfrak{A}=2^{X}$ with $\mu(E) \neq 0$ (that is, $\mu(E)>0$) for any non-empty set E. Thus the spaces (X, \mathfrak{A}, μ) we are looking for are precisely those for which there are no non-empty sets of measure 0 .
(b) Let $x \in X$ be fixed. Then, for any $E \in \mathfrak{A}, \mu(E)=0 \Longrightarrow \delta_{x}(E)=0$. In other words, $\delta_{x}(E) \neq 0 \Longrightarrow \mu(E) \neq 0$. That is, $\delta_{x}(E)=1 \Longrightarrow \mu(E)>0$. That is, $x \in E \Longrightarrow \mu(E)>0$. Thus, given $x \in X$, the spaces (X, \mathfrak{A}, μ) we are looking for are precisely those for which there are no non-empty sets containing x of measure 0 .

